

Early Research Program ERP_SI_BRIDGE : Scope & focus

- Advanced assessment of existing RC structures
- Accounting for multiple sources of uncertainty, i.e.:
 - randomness in intrinsic material properties,
 - randomness in defects due to load history,
 - (FEM) modelling uncertainty,
 - randomness in defects due to deterioration mechanisms : CORROSION

QUESTION

Which SHM technique should the owner apply which results in the minimization of the remaining service life cost?

Answer depends on:

- > the **cost** related to each of the measuring techniques;
- > the accuracies of each of the measuring techniques;
- the possible actions resulting from the outcomes of the measuring techniques;
- > the actual state of the structure;
- > the **cost and benefits** related to the failure or existence of the structure.

SHM (MSDF) : Vol Categorization & Flowchart

TNO Case Study Concrete Bridge

SHM TECHNIQUES (1)

Half-cell potential measurements

- > Probability of active corrosion.
- > Sensitive to environmental influences.
- > Interpretation by means of American Standard ASTM C876.

SHM TECHNIQUES (2)

MSDF

- > Probability of active corrosion.
- Embedded sensors
 - > Environmental data
 - Multiple Electrochemical data
- Knowledge based (expert) system for data interpretation.
- > Autonomous interpretation.

CASE STUDY

- > Fictitious, reinforced concrete slab bridge located in Rotterdam.
- > Focus on crack width near middle support ($w_{lim} = 2mm$).
- > Two SHM techniques:
 - > MSDF
 - > Potential measurements
- > Two possible actions:
 - > No action
 - Cathodic protection (limit corrosion rate)

CASE STUDY

Results from file-survey (nominal / characteristic values)

The design lifetime:	50 years
Concrete cover:	30 mm
Curing time:	28 days
Water cement ratio:	0.5 [-]
Cement type:	CEMI
Rebar diameter:	12 mm
Tanaila anlitting atr	

Tensile splitting str. : 2.2 MPa

CASE STUDY

- Environmental class:
- > Average relative humidity:
- > Average temperature:

80% 20º Celcius

XS3

ASSUMPTIONS

Assumptions

- > Both measuring techniques equally expensive while compiling first models.
- > MSDF more accurate than half-cell potential measurements.

MSDF

Epot + /	ASTM	C876
----------	------	------

P(depass)	depass	no depass	P(depass)	depass	no depass
0-10 %	0.05	0.9	0-10 %	0.2	
10-90%	0.05	0.05	10-90%	0.2	(
90-100%	0.9	0.05	90-100%	0.6	(

0.6 0.2 0.2

NEEDS/DEVELOPMENTS

- > Hierarchical prior model for depassivation to be added
- > Developments w.r.t. MSDF sensor to be taken into account
- Costs to be quantified
- > Time as parameter in model to be included
- > Other actions to be included

>

GUIDELINES

- Terminology
- > Steps/flowcharts
- > Objectivity/Reporting

>

