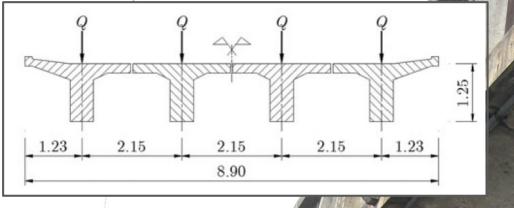
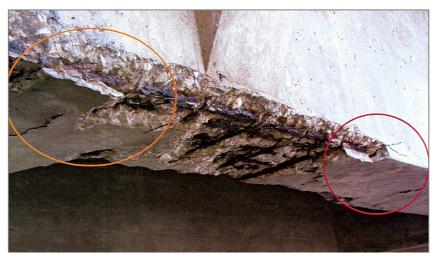

TERCENAS BRIDGE

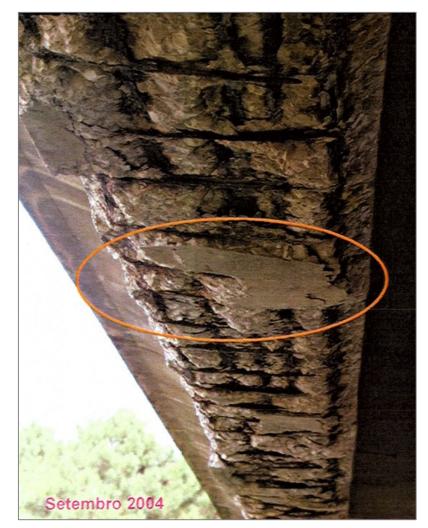
A chloride induced corrosion case


Luís Oliveira Santos

Tercenas Bridge

Owner.....Office of Water Services Construction......1970




Visual inspection Structural damages

- Cracking
- Concrete delamination
- Corrosion of reinforcement bars

Beam on the sea side (left beam)

On-site tests

In areas without apparent degradation of the concrete:

- Determination of concrete cover depth
- Measurement of carbonation depth
- Measurement of corrosion potential (ASTM C876:91)
- Measurement of corrosion rate (RILEM TC-154-EMC, 2002)
- Measurement of resistivity of concrete

Measurements at Beams 1, 2 & 4; South pier; South Abutment

Manuel Salta et al . (2005).

Nov./Dec. 2004

Laboratory tests

Taking cores for testing:

- Chloride content of concrete
- Carbonation of concrete
- Compressive strength of concrete
- Microscopic analysis

Conclusions and recommendations from the tests

Taking into account:

- The advanced state of degradation of the bridge
- The very depth contamination of concrete with chlorides.

Bridge replacement was recommended.

Bridge visual inspection Structural damages

Jan. 2008

Bridge visual inspection Structural damages

April 2009

Safety until replacement ?

- Traffic restrictions
 - Speed limit
 - Maximum weight
 - Avoid traffic over the left beam
- Frequent visual inspections

Traffic restrictions

Tercenas Bridge: the problem

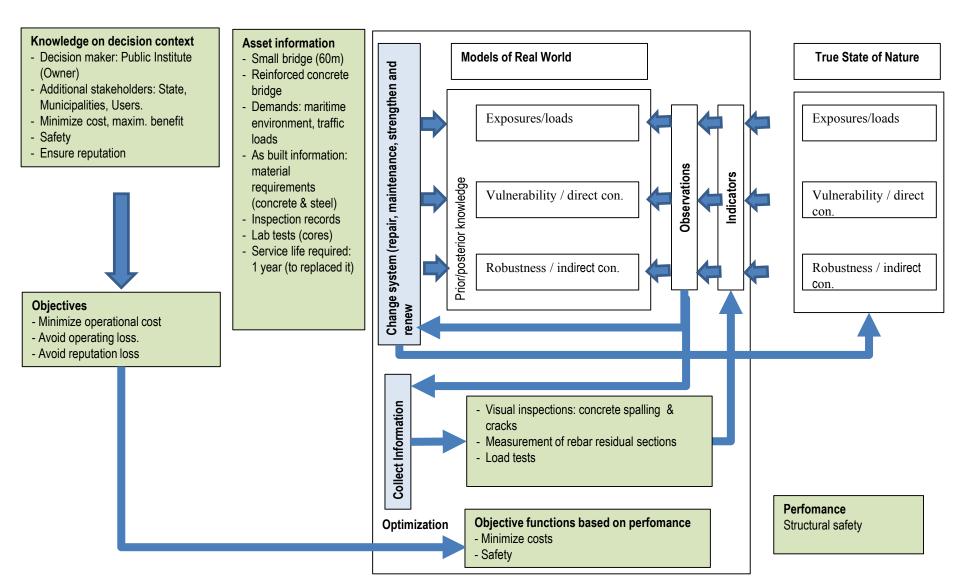
- Bridge inspection \rightarrow High level of degradation (corrosion)
- Lab tests (cores) \rightarrow Chloride induced corrosion
- Decision: bridge replacement
- Question: is the bridge safe until replacement ?
- Code-based safety assessment: Not safe (Critical limit state: bending at mid-span of the central span)
- Reliability analysis based on prior information: Not safe

Tercenas Bridge: the solution

- Sensitivity analysis to identify the random variables more significant to structural safety → Residual section index (i_{res} =A_{res} /A)
- Collect information on key variable (i_{res})
- Updating the residual section index predictive model \rightarrow Bridge safe

Implementation of a Vol analysis

- Decision maker : public institute (Portuguese Office of Water Services)
- System temporal and spatial boundaries
 - Time for replacement
 - Seaside beam: bending at mid-span of the central span
- Events of interest
 - very depth contamination of concrete with chlorides
 - corrosion initiation of reinforcement bars
 - crack and spalling of concrete
 - the ultimate failure



Implementation of a Vol analysis

- Indicators
 - Cracks and spalling of concrete
 - Residual section area of reinforcement bars
- Basic decision alternatives
 - Close down the bridge
 - Carry out a structural assessment and base further decisions on its results.
- Simplifications
 - To consider the formation of a plastic hinge at mid-span of the central span as the critical scenario

Remedial actionsEvents of interestIndicators- Immediate closing of the bridge
- Traffic restrictions
- Frequent visual inspections- Concrete contamination (1)
- Corrosion initiation (2)
- Crack and spaling of concrete (3)
- Ultimate failure (4)- Residual section area of
reinforcement bars
- Crack sizes
- Concrete delamination

Questions & obstacles

• Starting point:

- Before on-site and lab tests (chloride content of concrete, compressive strength of concrete, measurement of corrosion rate, etc.
- After the decision of replacing the bridge
- Direct and indirect costs

Assumptions & procedures to be standardized

• Quantification of "reputational" costs caused by structural failure

