Brief Introduction
to Probability
Theory

Jochen Kohler
6.11.2017

@NTNU

Norwegian University of
Science and Technology



Lecture overview

Lecture practicalities
Motivation
Probability
Bayes’ Rule

Random Variables and
Distributions



Contacts and Material
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Material The lecture is brief.
The interested student is invited to find
further material in the corresponding *.zip
folder.
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Material

Benjamin, J. R. and C. A. Cornell (1970). Probability,
Statistics, and Decision for Civil Engineers.

TOC

1. Data Reduction

2. Elements of Probability Theory

Probabllity, Statistics,
and

3. Common Probabilistic Models '1‘:""‘1'.‘.1‘;."""‘.2.’1‘2:’.2

4. Probabilistic models and Observed Data
5. Elementary Bayesian Decision Theory

6. Decision Analysis of Independent Random
Processes
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Material

Michael Havbro Faber, 2012,
Statistics and Probability Theory
TOC

1. Engineering Decisions Under Uncertainties
2. Basic Probability Theory

3. Descriptive Statistics

4. Uncertainty Modeling

5. Estimation and Model Building

6. Methods of Structural Reliability

7. Bayesian Decision Theory
Processes

Topics in Safety, Risk, Reliability and Quality

Michael Havbro Faber

Statistics and
Probability Theory

In Pursuit of Engineering Decision

| Support

@_ Springer
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Build Environment
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Structural lifecycle

Planning &
Feasibility Study

Investigation
and Tests

Decommissioning

Operation & A /

Maintenance > Execution



What Structural Engineers do:

&
— plan 6\>Q
— investigatg ©
- d|menil&‘| design

— |ns
g{alntaln

0\6\ onstruct

%

\Y

The build environment: e.g.
dwellings, hospitals, schools, office

buildings, industrial facilities , dams,

bridges, tunnels.

Constrains:

assure
- safety for personnel and
- safety for environment

- cost effectiveness
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What is a decision problem ?
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What is a decision problem ?

The oil wildcatter

R,=0.1-46+0.9-(-0.4)=01=> R. => P. -C_
i=1 i

oil

Drill, Oil -> 5 - 0.4 = 4.6 Mio$

Drill, no Qil-> 0-0.4 =-0.4 Mio$%$
P, =0.1

no Drill No drill, Oil -> 0 Mio$

~  Nodrill, no Oil-> 0 Mio$

no Oil



Engineering =
Answering the basic questions of reasoning

e What can | know ?
e What shall | do ?

 What may | hope ?

Immanuel Kant (1724 — 1804)
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Prologue — Set Theory

The total set of all possible outcomes of an experiment is called
event space (.

This can be written as follows:

Q =] —o0;00]
An event contains a specific collection of observations and is a
subset of the event space.

PR

_— Event
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Prologue — Set Theory

By using the Venn Diagram we can define different relation

between events:
E, NE,

ENE =0

Unions: \
E, UE, \~

CED Q
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Probability - what is it?

Three different interpretations:

* The Frequency Interpretation of Probability

» The Classical Interpretation of Probability

- The Subjective Interpretation of Probability

The “rules of calculus” are not affected by the interpretation !!



Probability — the Axioms

Axiom 1: For every event A, Pr (A) > 0 , i.e. the probability of every
event must be nonnegative.

Axiom 2: The probability of a certain event S is one; Pr (S) = 1.

Axiom 3: For every infinite sequence of disjoint events A, A,, ...,

Pr (UZIAI') = ZZI Pr (Al') '
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Probability — the Axioms

The 3 axioms allow to explore the following properties of probability:

Pr (@) = 0, the probability of the empty set is zero.

Pr (U?zl A) = S Pr (4;) , Axiom 3 can be generalized to finite
sequences of disjoint events.

For every event A, Pr (AC) =1-Pr (A) . Where A° is the
complementary event of A.

If A c B, then Pr (A) < Pr (B) .

For every event A, 0 < Pr(A) <1.

For every two events A and B,

Pr(AUB) =Pr(A)+Pr(B)-Pr(ANB).
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Conditional Probability

A primary use of probability in engineering decision making is associated
with updating probabilities based on observed events. The updated
probability of the event A after we learn that event B has occurred is the
conditional probability of A given B, Pr(A|B).

Definition:

Pr(AlB) =2 rlg;“(;)B)
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Conditional Probability

From the commutative property of multiplication and intersection (¢ *d =d * ¢
and AnB =BnNA)

the Multiplication Rule for Conditional Probabilities can be derived:

If Pr(A) >0 and Pr(B) > 0 then,
Pr(An B) = Pr(B)Pr(A|B) = Pr(A)Pr(B|A) = Pr (BN A)
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[20
Total Probability Theorem

A sample space S can be divided in k disjoint events B,, B,, ..., B, such that
u’}le,- = §, i.e. B; are the events form a partition of the sample space. For any
event Ain S,

Pr(A) = Zk: Pr (A|B))Pr (B))

J=1
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Independence

Definition of Independence

Two events A and B are independent if
Pr (A M B) = Pr (A)Pr (B)
and correspondingly

Pr(A|B) = Pr(A) and Pr(B|A) = Pr (B).



Bayes' Theorem

Suppose that we have k disjoint events B, B,, ..., B, ..., B, and we observe an
event A. If Pr(A|B;)are known the Bayes Theorem can be utilized to compute

the conditional probability of B; given A, Pr(B;| A).

Starting from the general definition of conditional probability and utilizing the Total
Probability Theorem for replacing Pr (A) Bayes' Theorem can be derived as:

Pr (AmB,-) _ Pr (A|Bi)P" (Bi)

Pr (B A) = -
Pri4) 2_ Pr(A|B)Pr (B)

[22
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Random Variables

Probability density function — Probability distribution function

e Arandom variable is denoted by using
large letters:

X

e A realization of a random variable is denoted
by using small letters: -

X 2 2/
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Random Variables

Discrete Continous

= Fx ()
é PX(X):ZpX(Xi) FX(X):P(X<X)
_‘DL’ X; <X g

Px (¥ fix (x)
g _ R (x)
Sl p)=P(X=x) 0=
a | | | | » ‘
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Random Variables
Moments of random variables

e Probability distribution functions (density and cumulative distribution
functions) are defined by their parameters or moments:

R ) e

\

Parameter

e The parameter of a distribution can be expressed by the moments of
the distribution function and vice versa.



Moments of variables

e The it moment of a continuous random variable is defined by:

e The it moment of a discrete random variable is defined by

/ﬁzgx‘j-px(xj)
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Central moments

e The it central moment of a continuous random variable is defined by:

0

A = j(x‘ —,u)- f (x)dx

—Q0

e The ith central moment of a discrete random variable is defined by

n

7= 2% = %) pe (%)

j=1
The first moment is the mean - The first central moment is zero.
The second central moment is the variance

The third central moment is the skewness

The fourth central moment is the kurtosis
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Expectation Operator

The expectation operator facilitates the calculation of the mean
value and the variance of random variables.

E[X]:zx-fx(x)dx

o0

Var[X]= j(x—yx ) - £, (x)dx

—00

This is especially important for a compact notation and communication among
experts and reading of reports.

The expectation operator is often used when dealing with functions of random variables.

[28
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Expectation Operator
JENSEN'S Inequality!!

Elg(X)]= g(E[X)

Equality only for the rare case of linear functions.
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Expectation Operator

E[\/A2+Bz}z225.l 2 1007 + 2007 = 223.6

JENSEN'S Inequality!!
A ~N(100,20)

B~N(200,40)



Probability density function

Distribution

Normal distribution

f (x)—a\/_e p( (
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Distribution
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Distribution

Gamma distribution

k-1 T (k, Ax) ¢ k-1
A(Ax) F (X)= (k,t)=Jexp(-u)u® " du
fo (X)= exp(—Ax X r(k
X( ) F(k) p( ) ( ) 0
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Distribution

Uniform distribution

1
f, (X)=——
x 0=t
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Distribution

Exponential distribution

fx (X) = Aexp(—A(X)) Fy () = 1—exp(-4x)
1
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Probability density function
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Distribution

Beta distribution
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Probability density function
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Distribution

Beta distribution

F(I’+t) (X_a)r—l(b_x)t—l = (X): F(r-I—t) ljl(x—a)r_l(b_x)t_l dx
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Probability density function
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Distribution

Beta distribution
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Probability density function
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Distribution

Gamma distribution
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Some guidance on the use of distributions

Normal distribution

The sum of independent random variables converges to the normal
distribution (The central limit theorem CLT); Defined between —

infinity and + infinity.

Lognormal distribution

The product of independent (positive) random variables converges
to the log-normal distribution; defined between zero and +infinity.

Used e.g. for material strength.
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Some guidance on the use of distributions

Exponential distribution

Describes the time between the occurrence of two events which
follows a Poisson process.
Used e.g. for modeling the mean time between failures.

Uniform distribution

Used for modeling events which are equal probable in a defined
interval.



Some guidance on the use of distributions

Gamma distribution

Describes the time until the kt event of a Poisson process occurred.
Frequently used to describe observations.

Beta distribution

Very flexible and used to model observation of any kind in a specific
interval.
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Conditional Density Functions

A probability density function can be expressed conditional to the
parameters 0.

Jx(x | 0)
This is especially important if the parameters are not known or uncertain.

If the uncertainty about the parameters is represented by a probability
density 7(0) the Total Probability Theorem can be applied in order to find
the so called Predictive Density Function:

= /9 £u(x|6)7(6)d6
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The posterior probability (density) function for @ is

_w(0) f(x]0)
m(0x) = @)
where
(f@ 7(0) f(x|f) dO if 6 is continuous,
flx) =«
(Y oom(0) f(x]0) if 0 is discrete.

Notice that, as f(x) is not a function of #, Bayes Theorem can be rewritten as

m(f]x) oc w(0) x f(|0)

1.e. posterior ox prior X likelihood.
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