

Quantifying the Value of Structural Health Monitoring

Application of B-WIM measurements in assessment of existing bridges

University of Zagreb Faculty of Civil Engineering Croatia Aleš Žnidarič

Slovenian National Building and Civil Engineering Institute Slovenia

Industry Innovation Days – Workshop hosted by BRISA Group in Lisbon, 19th and 20th April 2018

INDEX

1. Decision scenario – assessment of existing road bridges

- 1.1 Introduction
- 1.2 Selection of assessment strategy

2. Monitoring methods applied

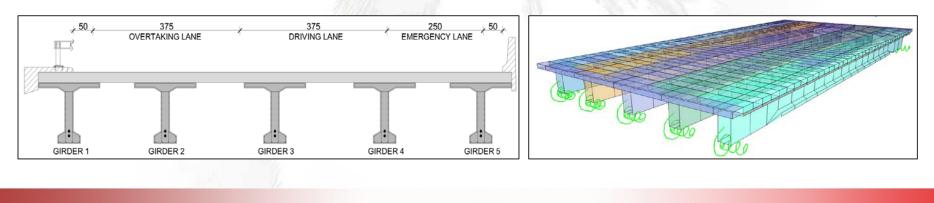
• 2.1 Bridge Weigh-in-Motion

3. Data and results obtained

- 3.1 Structural data
- 3.2 Traffic data
- 3.3 Results probabilistic approach

4. Value of the SHM information for the owner/concessionaire

- 4.1 Reliability levels and associated costs
- 5. Open question addressed to decision makers



1. Decision scenario – assessment of existing road bridges

1.1 Introduction

- Main objective prove that initial investments in monitoring (SHM) will result in:
 - Extended bridge service life
 - Reduction in bridge maintenance costs
 - Overall optimization of bridge management process
- Case Study Bridge description
 - Highway bridge, single span of 24,8 meters
 - Cross section 5 prestressed I-type girders and monolithic deck
 - Original designs and drawings available from the records

1. Decision scenario – assessment of existing road bridges

1.2 Selection of assessment strategy

- Strategy B₀ assessment without monitoring data
 - Numerical model based on visual inspection and original design plans
 - Traffic loads based on design codes for new bridges
 - Bridge rating based on deterministic or probabilistic approach
- Strategy B₁ assessment with short-term monitoring data
 - Calibration of numerical model with structural data obtained with monitoring
 - Traffic loads based on design codes for new bridges
 - Bridge rating based on probabilistic approach
- Strategy B₂ assessment with long-term monitoring data
 - Calibration of numerical model with structural data obtained with monitoring
 - Site specific traffic load models based on monitoring data
 - Bridge rating based on probabilistic approach

2. Monitoring methods applied

2.1 Bridge Weigh-in-Motion (B-WIM)

- Method that measures vehicles as they drive over the bridge
- Uses instrumented bridges as weighing scales
- Sensors placed under the bridge
- Advantages:
 - Completely portable
 - High accuracy
 - No interruption of traffic
 - Provides structural information
- Disadvantages:
 - Requires knowledge about bridges
- History:
 - Since late 1970s, research in Europe in 1990s
 - **SiWIM**[®] in the last 18 years
 - 2500+ installations, 25+ countries

2. Monitoring methods applied

2.1 Bridge Weigh-in-Motion (B-WIM)

- Traffic data collected for each vehicle
 - Speed
 - Number of axles
 - Weight and spacing of each axle
 - Total weight of vehicle

- Bridge structural data
 - Bridge response to traffic loads
 - Influence lines
 - Load distribution
 - Dynamic characteristics

Time stamp	Lane	Speed [m/s]	Class	Number of axles	GSW [kN]	AW1 [kN]	AW2 [kN]	Axle spacing [m]
2007-03-22-00-39-28-955	1	17,5	41	2	123,8	37,07	86,69	6,07

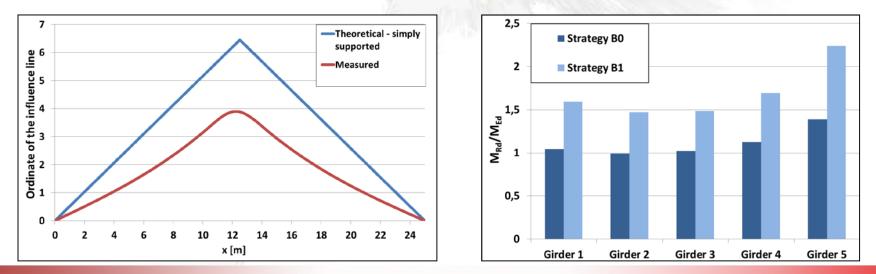
- Applications of B-WIM data
 - Traffic analysis
 - Pavement and bridge design (or assessment)
 - Selection of overloaded vehicles etc.

2. Monitoring methods applied

2.1 Bridge Weigh-in-Motion (B-WIM)

- Assessment strategies based on B-WIM data:
- Strategy B₁ short term measurement
 - Calibration of numerical model:
 - Influence lines
 - Load distribution factors
 - Measurement time:
 - Few hours or few hundreds vehicles

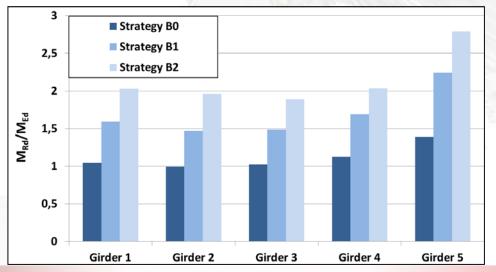
- Strategy B_2 long term measurement
 - Calibration of numerical model:
 - Influence lines
 - Load distribution factors
 - Updating of traffic load:
 - Site specific traffic load model
 - Realistic dynamic factors
 - Measurement time:
 - Minimum of two months or at least 100 000 vehicles



3. Data and results obtained obtained

3.1 Structural data – bridge response to traffic loads (strategy B₁)

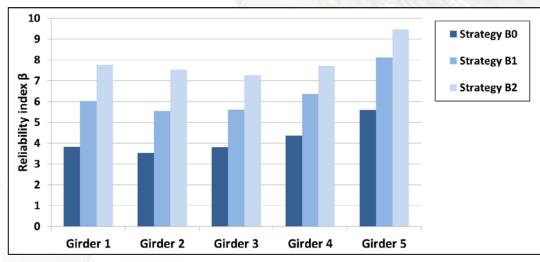
- Realistic influence line:
 - Reduction in total load effect (moments and shear forces)
 - Revealing the true bridge behavior (not simply supported)
- Distribution of total loads over girders
 - Indication of critical sections on the bridge
 - Revealing non visible cracks and changes in the stiffness



3. Data and results obtained obtained

3.2 Traffic data (strategy B₂)

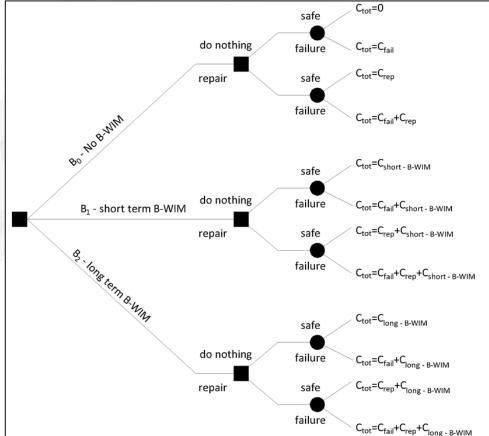
- Dynamic characteristics of the bridge:
 - Reduced dynamic amplification compared to the design codes recommendations
 - Revealing the state of the pavement
- Site specific traffic load model
 - Realistic traffic load on specific bridge, calculated for different time periods
 - Reduction of traffic load comparing to the codes



3. Data and results obtained obtained

3.3 Results – probabilistic approach

- Approach based on calculation of probability of failure p_f
- Probability of failure occurs when load effect E exceeds structural reliability R
- Reliability index β represents probability of failure
- Target values of **β**:
 - Eurocode design of new structures
 - Probabilistic modal code design and assessment of structures



4. Value of the SHM information for the owner/concessionaire

4.1 Reliability levels and associated costs

- Cost benefit analysis
- Decision tree for calculation
- Definition of all related costs:
 - Cost of bridge failure C_{fail}
 - Cost of bridge repair C_{rep}
 - Cost of short term B-WIM C_{B1}
 - Cost of long term B-WIM C_{B2}
- Multi level assessment method
- Time variant analysis prediction of future reliability and costs
- From previous experience: Overall costs are minimal, due to the fact that the bridge does not have to be closed or restricted for next 10-20 years.

4. Value of the SHM information for the owner/concessionaire

4.1 Reliability levels and associated costs

- Cost of bridge failure C_{fail} :
 - Direct cost bridge value due to its replacement
 - Indirect cost approx. 2 3xbridge value (due to alternate routes, traffic jams etc.)
- Cost of bridge repair C_{rep}:
 - Direct cost value of bridge repairs (bridge type, extent of damage etc.)
 - Indirect cost approx. 1 2xbridge value if bridge is closed or restriction is imposed
- Cost of short term B-WIM C_{B1} :
 - B-WIM installation 0,075 0,1 mil. €
 - Data post processing 0,005 0,010 mil. €
 - Bridge analysis 0,005 0,020 mil. € (depending on the bridge size and type)
- Cost of long term B-WIM C_{B2:}
 - B-WIM installation 0,075 0,1 mil. €
 - Maintenance and data post processing 0,020 0,025 mil. € (every year)
 - Bridge analysis 0,015 0,030 mil. € (depending on the bridge size and type)

5. Open question addressed to decision makers

- 1. Do you perform any type of Weigh-in-Motion measurements on your roads/bridges?
- 2. If you do, what are you using results for?
- 3. Is this research enough for you to invest in WIM measurements for optimization of bridge management system?
- 4. Do you use any other measurement/monitoring technique to improve knowledge about your bridges and to optimise their structural assessment?
- 5. Are you interested in a pilot project on your bridges? Would you be prepared to finance it?

Thank you for your attention

http://www.cost-tu1402.eu/

