ETH zürich

A software database on Vol & UQ

WG3: COST Action TU1402

WG3: COST Action TU1402

Name	Short Description
COSSAN-X Institute for Risk and Uncertainty, University of Liverpool	COSSAN is a general purpose software package for Uncertainty Quantification (UQ), Simulationbased Reliability Analysis, Sensitivity Analysis, Meta-Modelling, Stochastic Finite Elements Analysis (SFEM), and Reliability-Based Optimization (RBO)

1

Name	Short Description
DAKOTA SANDIA National Laboratories	The Dakota toolkit provides a flexible, extensible interface between analysis codes and iterative systems analysis methods. Dakota contains algorithms for: optimization with gradient and nongradient-based methods; uncertainty quantification with sampling, reliability, stochastic expansion, and epistemic methods; parameter estimation with nonlinear least squares methods; and sensitivity/variance analysis with design of experiments and parameter study methods.

1

Name	Short Description
UQLab Chair of Risk, Safety and Uncertainty Quantification, ETH ZUrich	UQLab is a general purpose Uncertainty Quantification framework developed at ETH Zurich (Switzerland). It is made of open-source scientific modules which are smoothly connected through UQLabCore to carry out uncertainty propagation through Monte Carlo sampling, sensitivity analysis, reliability analysis (computation of rare event probabilities), build surrogate models (polynomial chaos expansions, Kriging, low-rank tensor approximations, etc.) and more.

1

Name	Driving Principles	Short Description	
Pi4U Chair of Computational Science, ETHZ System Dynamics Laboratory, University of Thessaly	TMCMC (for exact Bayesian inference) - CMA-ES (for optimization) - Subset Simulation (for rare event sampling) - ABC-SubSim (for approximate Bayesian inference) - A-PNDL (for parallel numerical differentiation)	Π4U (Pi4U) is an HPC framework for Bayesian uncertainty quantification of large scale computational models.	

Name	Short Description
SMART UQ	SmartUQ: a powerful uncertainty quantification and analytics software platform
Chair of Computational Science	for Design of Experiments, Emulation, Sensitivity Analysis, Statistical
ETH Zurich	Calibration/Optimization, Propagation of Uncertainty, Inverse Analysis

Copyright © SmartUQ. All rights reserved.

2 2 2 2 2 2 2 2 2 2

OpenTURNS

Airbus, EDF, IMACS, ONERA, PHIMECA

- Multivariate probabilistic modelling including dependence
- Numerical tools dedicated to the treatment of uncertainties
- Generic coupling to any type of physical model
- Open source, LGPL licensed, C++/Python library

tools focusing on Decision support/policy planning

WG3: COST Action TU1402

Name	Driving Principle	Short Description
<u>Netica</u> NORSYS Software Corp.	Bayes Nets	Netica works with belief networks and influence diagrams. It can use influence diagrams to find optimal decisions which maximize the expected values of specified variables. Netica can construct conditional plans, since decisions in the future can depend on observations yet to be made, and the timings and inter-relationships between decisions are considered

Bouncing Ball

-01

40

۰.

Copyright 1997-2001 Brent Boerlage Distributed with permission by Nonys Software Corp.

Name	Driving Principle	Short Description	
Precision Tree	Decision Trees	PrecisionTree, visually maps out, organizes, and analyzes decisions using decision	
Palisade		trees, in Microsoft Excel. Decision trees are quantitative diagrams with nodes	
		and branches representing different possible decision paths and chance events.	

Name	Driving Principle	Short Description
GeNIe BAYES FUSION	Bayesian networks, influence diagrams, and structural equation models	GeNIe is a graphical user interface (GUI) to SMILE and allows for interactive model building and learning.
QGeNIe Modeler BAYES FUSION		QGeNIe is a rapid model development interface that allows for fast prototyping of decision models, useful especially in applications such as strategic planning.

		_
Variable	Effectiveness	
Seriously Over Budget	0.20	I
Insufficient Advertizing	0.07	
Penalties	< 0.01	
Planning Problems	< 0.01	
Personnel Shortages	< 0.01	
Other Distractions	< 0.01	
Increased Load	< 0.01	
Higher Speed Requirem	< 0.01	

ТП

Name	Driving Principle	Short Description
KUBA Infrastructure Management Consultants GmbH (IMC)	Markov-Decision Processes	 KUBA facilitates manage tunnels. The individual r administration and d identification of optim financial requirement

KUBA facilitates management of engineering structures such as bridges, galleries, retaining walls and tunnels. The individual modules of KUBA support:

- administration and documentation of the structure, inspections and maintenance measures
- identification of optimal conservation strategies, calculation of associated state forecasts and their financial requirements as well as identification of proposed measures (CUBA-MS),

Next Steps

- Create a common case study for sequential decision making, e.g. the Ellis bridge inspection problem.
- Use the same case studies, across the different platforms to demonstrate capabilities and potential.
- Gather further inputs from Action participants

