COST TU1402: Quantifying the Value of Structural Health Monitoring

The Söderström Bridge COST Action TU1402 – Case study proposal

John Leander, KTH Royal Institute of Technology Dániel Honfi, RISE Research Institutes of Sweden Ìvar Björnsson, Lund University *Trinity College Dublin, 29-30.05.2017*

DECISION THEOR

VALUE OF STRUCTURA HEALTH

The Söderström Bridge

DECISION THEORY VALUE OF HEALTH HEALTH MONITORING HEALTH H

The Söderström Bridge

Some properties:

- A steel girder bridge continuous in 6 spans.
- A total length of 190 m.
- Built 1950.
- Carries the railway traffic through the so-called wasp waist in Stockholm.
- About 550 trains pass the bridge every day.
- Long term measurements of strains for fatigue assessment (56 strain gauges).

DECISION THEORY

The Söderström Bridge

- The bridge contains numerous fatigue critical details.
- This case study is focused on the connection between the lateral bracing and the stringer beams.
- Previous assessments (conventional and enhanced) have shown an exhausted fatigue life.

Condition assessment problem

- What methods should be used, linear damage accumulation or fracture mechanics, how can measured response be utilized to the most?
- What further actions should be taken regarding inspections, monitoring, and repair actions to lengthen the service life of the bridge?
- Worth to do further assessment?
- How?
 - Inspect more/better?
 - Improve structural analysis?
 - Improve consideration of uncertainties?
 - Etc.

ISO 13822

DECISION THEORY

VALUE OF

5

Levels of assessment (examples)

	Assessment level				
Ref.	1	2	3	4	5
BRIME, 2001	Partial factors method, loads and resistances from records and standards, simple structural model	Partial factors method, loads and resistances from records and standards, refined structural model	Partial factor method, material properties and loads based on in-situ observations	Modification of partial factors, material properties and loads based on in-situ observations	Full probabilistic assessment
SAMCO, 2006	Direct assessment of serviceability values from measurements (no structural analysis)	Assessment of safety and serviceability using simple model based methods (data from documents)	Assessment using refined model based methods (data from tests, monitoring, etc.)	Adaptation of target reliability measures and assessment with modified structure- specific values.	Full probabilistic assessment (data from tests, monitoring, etc.).
Wenzel, 2009	Condition assessment (simple instrumentation and simple decision support)	Performance assessment (more detailed then the previous level, more indicators)	Detail assessment and rating (includes analytical model representing the structure)	Lifetime prediction (data from at least 3 years and simulations, special software for decision support)	
Skokandic et al., 2016	a) Linear analysis	a) Non-linear analysis with global safety factor	a) Probabilistic approach		
	b) + updated loads from measurements	b) + updated loads from measuerements	b) + Bayesian updating		
Plos et. al, 2017	Simplified analysis methods	3D linear shell (FE) analysis	3D non-linear shell FE analysis elements and fully	3D non-linear FE analysis with continuum	3D non-linear FE analysis with continuum
			bonded reinforcement	elements and fully bonded reinforcement	elements including reinforcement slip

COST TU1402: Quantifying the Value of Structural Health Monitoring

Levels of condition assessment

- Consolidate approaches considering three aspects of assessment:
 - Modeling sophistication
 - Considerations of risk/uncertainty
 - Knowledge/information content
- Improved assessment entails moving away from origin
- Central question:
 - How can this representation aid with decisions?
- More specifically:
 - Determine suitability of methods for specified case; are some methods less appropriate?
 - Provide guidance for 'navigating the cube'

Model sophistication

- 1. Initial assessment
 - Conventional assessment following the governing regulations.
 - Based on theoretical load models and a verification of stress levels.
- 2. Linear damage accumulation
 - Palmgren–Miner rule.
 - Load models based on "realistic trains".
 - Consideration of historic loads.
- 3. Linear elastic fracture mechanics
 - Nonlinear damage accumulation.
 - Consideration of a physical crack.
 - Consideration of load sequence.

DECISION THEORY

VALUE OF STRUCTURA HEALTH MONITORING

Uncertainty consideration

- 1. Deterministic assessment
 - Conventional assessment following the governing regulations.
- 2. Reliability-based assessment
 - Limit state function.
 - Uncertain data considered by stochastic variables.
 - Model uncertainties.
 - An estimated probability of failure.
- 3. Risk-based assessment
 - Risks and benefits.
 - Enables decision support.

DECISION THEORY

VALUE OF STRUCTURA HEALTH MONITORIN

Knowledge content

- 1. Desktop assessment
 - Information from drawings and regulations.
- 2. Inspections and testing
 - Damage prognosis.
 - Non-destructive testing (NDT).
 - Material samples.
- 3. Monitoring
 - Response measurements.

DECISION THEORY

VALUE OF STRUCTURA HEALTH MONITORIN

Assessment level	Fatigue life/number of cycles	Uncertainty
Initial assessment	Insufficient	consideration
Linear damage accumulation Reliability-based Measured response	8.6×10 ⁶	
Linear elastic fracture mechanics Reliability-based Measured response	20×10 ⁶	Knowledge content
Linear elastic fracture mechanics Reliability based Measured response NDT results (magnetic particle testing)	42×10 ⁶	

The Söderström Bridge case Pre-posterior analysis

e ₀	 No inspection
e ₁	– Inspect
<i>z</i> ₀	 Sufficient reliability
<i>z</i> ₁	 Insufficient reliability
a_0	– Do nothing (0)
a ₁	– Repair (-100)
θ_0	 Nothing happens (0)
θ_1	- Failure of the detail (-1000

Utility – Cost of experiments + actions + final state.

The Söderström Bridge case Pre-posterior analysis

Result with tentative values:

DECISION THEORY

VALUE OF STRUCTURAL HEALTH MONITORING

•
$$E[u(e_0)] = -10$$

•
$$E[u(e_1)] = -6.5$$

Best decision: e_1

Some references

Leander J, Andersson A, Karoumi R, 2010. Monitoring and enhanced fatigue evaluation of a steel railway bridge. *Engineering Structures*, Vol 32(3), pp. 854-863. Leander J, Karoumi, R, 2012. Quality assurance of measured response intended for fatigue life prediction. *Journal of Bridge Engineering*, Vol. 17(4), pp. 711-719. Leander J, Norlin B, Karoumi R, 2015. Reliability-based calibration of fatigue safety factors for existing steel bridges. *Journal of Bridge Engineering*, Vol. 20(10). Leander J., Honfi D., Börnsson ì, 2017. Risk-based planning of assessment actions for fatigue life prediction, 2nd International Conference on Structural Integrity, ICSI 2017, 4-7 September 2017, Funchal, Madeira, Portugal.

Thank you for your attention!

