COST TU1402: Quantifying the Value of Structural Health Monitoring Brussels, January 23-24, 2017

Observations and Suggestions on Research Strategy

M. H. Faber

Department of Civil Engineering Aalborg University Denmark

General Observations

Basis

- Proc. from 1st workshop DTU, May 4-5, 2015
- Proc. from 3rd workshop Barcelona Tech, March 14-15, 2016
- Proc. from 4th workshop Guilford, April 18-19, 2016

39 Fact-Sheets - addressing:

- Theoretical Framework
- SHM Strategies and Structural Performance
- Methods and Tools
- Case Studies

An Of course the presentations from last August at DTU

General Observations

The work till now has collected and presented very significant knowledge on:

- Frameworks
- Strategies
- Approaches
- Techniques & tools and,
- Case studies and example applications.

A strong achievement ! - an important stepping stone for adding value to already existing knowledge

How to proceed – putting order to the collected knowledge !

Targeted Processing

Generic Framework for Vol of SHM

Value of Information

The value of information *VoI* is determined from:

$$VoI = \max_{e} E_{\mathbf{Z}} \left[\max_{a} \int b(e, a, \mathbf{x}) f_{\mathbf{X}}''(\mathbf{x}, a | \mathbf{Z}) d\mathbf{x} \right] - \max_{a} \int b(a, \mathbf{x}) f_{\mathbf{X}}'(\mathbf{x}, a) d\mathbf{x}$$

Generic Framework for Vol of SHM

Way Ahead -

Focus efforts on categorizing :

- 1. Vol/SHM decision problems
- 2. Considered structures, components and materials
- 3. Deterioration processes
- 4. Possible measurable indicators
- 5. Uncertainty modeling of indicators/measurements
- 6. Relevant measure of (remedial) actions
- 7. Objective functions representing service life performance
- 8. Formulations of the pre-posterior decision problem
- 9. Uncertainty modeling and propagations tools

and 10. illustrate the approach and quantify the VoI for the most relevant categories

Vol/SHM decision problems:

There are different decision problems involving structures where SHM could provide valuable information:

- Structural integrity management for deteriorating structures
- Load modeling purposes
- Prototype development/design by testing
- SHM prototype development
- Early damage/failure warning

-...

Vol/SHM decision problems:

There are different decision problems in olving structures here SHM could provide valuable information:

- Structural integrity management for deteriorating structures
- Load modeling purposes
- Prototype development/design by testing
- SHM prototype development
- Early damage/failure warping

-...

Suggested to focus on structural integrity management for structures subject to corrosion and fatigue

Considered structures, components and materials:

There is a broad spectrum of different structures, components and materials for which SHM could be relevant, e.g.

- Offshore structures (steel, concrete)
 - members
 - hotspots (welded joints)
 - boat landings
 - anodes
 -
- Wind turbines (steel, concrete)
- Highway bridges (steel, concrete)
- Historical buildings/monuments (masonry, stone,...)
- Soil anchors

Suggested to focus on highway bridges (steel and concrete)

Deterioration processes:

A number of different deterioration processes may be relevant depending on structure, materials and environment

- Alkali Silica Reaction
- De-passivation of concrete cover (ingress of chlorides, carbonation)
- Fatigue crack growth
- Corrosion
- Thaw / frost cycles
- Scour

Suggested to focus on corrosion and fatigue

Possible measurable indicators:

Different indicators may be relevant for different structures, components, materials and deterioration processes, e.g.:

- Spalling
- Rupture of reinforcement
- Rupture of cable wires
- Surface coloring
- Cracking
- Cross sectional stresses
- Hotspot stresses
- Dynamic responses

Suggested to focus on cracks, surface coloring, spalling, potentials, dynamic responses, stresses/strains

Possible measurable indicators:

Concrete structures	Corrosion initiation	Corrosion propagation	???
	Chloride profile	Acoustics	
	НСР	Radar	
	Ladder measurements	??	
Steel structures	Fatigue crack growth	???	???
	ACFM		
	Dynamic response		
Loads	WiM		
	Temperature		
Environment	Humidity		
	Temperature		
	Salinity		

...

Uncertainty modeling of indicators/measurements:

The uncertainty associated with the relationship between what is measured and the structural characteristics/conditions of interest must be quantified – accounting for the uncertainty associated with the measurements themselves.

Measured	Condition
HCP	Corrosion propagation
Strain variations	Stress variations/fatigue
Electron diffusion	Strain/stress
Chloride concentration	Initiation of corrosion
Acoustic emissions	Wire/reinforcement ruptures

. . .

PALL STRUCTURAL HEALTH CONTINUE MONITORING CONTINUE MONITORING CONTINUE SUBJECT

Background

Posterior decision analysis

By sampling information z using an experiment e we may update the probabilistic description of X

$$f_{\mathbf{X}}''(\mathbf{x}, a \,|\, \mathbf{z}) = \frac{L(\mathbf{x} \,|\, \mathbf{z}) f_{\mathbf{X}}'(\mathbf{x}, a)}{\int L(\mathbf{x} \,|\, \mathbf{z}) f_{\mathbf{X}}'(\mathbf{x}, a)}$$

Of course the likelihood of the sample z depends on the experiment e why we write

 $L(\mathbf{x}|\mathbf{z}) = L(\mathbf{x}|\mathbf{z}, e)$

Uncertainty modeling of indicators/measurements:

Structure described by system state variables \mathbf{x}

Performance of structure described as function of system state variables

 $Y = g(\mathbf{X})$

Observed system characteristic

 $z = h(\mathbf{w}, \mathbf{x})$

PALINE OF STRUCTURAL HEALTH MONITORING, COMPANY STRUCTURAL HEALTH MONITORING, COMPANY STRUCTURAL HEALTH STRUCTURAL HEALT

Categorizing....

Uncertainty modeling of indicators/measurements:

Updating of performance of system

$$P(Y = y | z) \propto P(z | Y = y) P(Y = y) = P(h(\mathbf{W}, \mathbf{X}) = z | g(\mathbf{X}) = y) P(g(\mathbf{X}) = y)$$

Uncertainties must account for:

- Limited information/statistical uncertainty
- Inherent variability associated with SHM technique
- Model uncertainties

Time(s)/duration, location(s)/extent must be accounted for

Different indicators may be associated with the same performance Different performances may be associated with the same indicator

Technique	Time/duration	Space/location	Struc. charact.	Struct.perf.	SHM mod.
Strain gauges	Continuous	Hot spot i	Fat. stress	Fat damage	1
НСР	Time j	Surf.j	Corr. initi.	Cracking	2
ACFM	Time l	Hot spot k	Crack	Joint fail.	3
Accelerometer	Continuous	Plan j	Stiffness	Crack/failure	4

Relevant measures of remedial actions:

Depending on the type of structures, components, materials and deterioration processes, and level of damage different remedial actions might be relevant e.g. (the case of integrity management):

- Concrete cover exchange
- Concrete cover sealing
- Exchange of reinforcement
- Exchange of membranes
- Stress release by drilling
- Patching
- Welding

Their effects must be modeled probabilistically

Objective functions for service life performance:

Depending on the SHM decision problem, the type of structure, component and material, indicators and remedial actions different objective functions (utility functions) may be relevant

Such functions must account for – represent the consequences of – the quality of the monitoring results in terms of type 1 and 2 error probabilities

Formulations of the pre-posterior decision problem:

For the different types of SHM decision problems different formulations of the decision analysis problem may be possible

It would be useful to establish a proposal on which of these possible formulations are adequate for which type of SHM decision problem

- Normal form decision analysis
- Extensive form decision analysis
- Combinations of the two

Uncertainty modeling and propagation tools:

We need models and tools for the propagation of uncertainties to describe and assess:

- Structural performances
- Quality of measurement techniques
- Indicators of structural conditions/performances
- Expected value of utility

It would be very useful to establish an overview of which models and tools for uncertainty propagation are relevant/efficient in which of the categorized cases

VALUE OF STRUCTURAL HEALTH MONITORING

Summary

Main contributors to categorizations

1.	VoI/SHM decision problems	WG1
2.	Considered structures, components and materials	WG2
3.	Deterioration processes	WG2
4.	Possible measurable indicators	WG2
5.	Uncertainty modeling of indicators/measurements	WG3
6.	Relevant measure of (remedial) actions	WG2
7.	Objective functions for service life performance	WG1
8.	Formulations of the pre-posterior decision problem	WG1
9.	Uncertainty modeling and propagations tools	WG3
10.	Application examples	WG4

Thanks for your Attention!

