COST TU1402: Quantifying the Value of Structural Health Monitoring Workshop, August 24-28, 2016, DTU, Denmark

Bayesian Analysis Methods

Costas Papadimitriou, University of Thessaly, Greece Geert Lombaert, K.U. Leuven Daniel Straub, Technical University of Munich Iason Papaioannou, Technical University of Munich

Outline

BAYESIAN INFERENCE

- Model selection & parameter estimation (Mode Calibration, FE model Updating, Damage Detection)
- Uncertainty propagation updating structural reliability
- Optimal Experimental Design & Decision Analysis under Uncertainty

BAYESIAN COMPUTATIONAL TOOLS

- Asymptotic approximations + Sampling Techniques

CHALLENGES IN STRUCTURAL DYNAMICS

- Theoretical, Algorithmic, Computational

APPLICATIONS

CONCLUSIONS

Structural Dynamics Models

Structural Dynamics Models

• Nonlinear/linear model classes – Governing Equation of Motion (e.g. FE model)

$$M(\theta)\ddot{u}(t) + g(u(t), \dot{u}(t); \theta) = L(\theta) E(t)$$
$$q(\theta \mid \mathsf{M}) = Q(u, \dot{u}, \ddot{u}, E, \theta)$$

Linear model classes – Eigenproblem

 $[K(\theta) - \omega^2 M(\theta)]\phi = 0$

Bayesian UQ+P

Bayesian UQ+P

<u>Probability models</u> quantify uncertainties & model the missing/incomplete information. <u>Cox interpretation of probability</u>, representing the degree of belief or plausibility of a proposition based on available information. Calculus of probability is used for consistent plausible reasoning

<u>Calculus of probability</u> is used for consistent plausible reasoning.

Parameter Estimation

Parameter Estimation

Posterior PDF $p(\theta \mid y, M) = \frac{\begin{array}{c} \text{Likelihood} & \text{Prior PDF} \\ p(y \mid \theta, M) & \pi(\theta \mid M) \\ p(y \mid M) \\ \hline p(y \mid M) \\ \hline \text{Evidence} \end{array}$

Model Prediction Error Equation

Data = Model Predictions + Error

 $y = q(\theta \,|\, \mathsf{M}) \,+\, e$

Parameter Estimation

Posterior PDF $p(\theta \mid y, M) = \frac{\begin{array}{c} \text{Likelihood} & \text{Prior PDF} \\ p(y \mid \theta, M) & \pi(\theta \mid M) \\ p(y \mid M) \\ \hline p(y \mid M) \\ \hline \text{Evidence} \end{array}$

Model Prediction Error Equation

Data = Model Predictions + Error

$$y = q(\theta | M) + e e^{e} e^{e} e^{e} e^{e} - N(0, \Sigma)$$

Parameter Estimation

Posterior PDFLikelihoodPrior PDF $p(\theta \mid y, M) = \frac{p(y \mid \theta, M) \quad \pi(\theta \mid M)}{p(y \mid M)}$ Evidence

Model Prediction Error Equation

Data = Model Predictions + Error

$$y = q(\theta | M) + e e^{e} e^{e} + e^{m} \sim N(0, \Sigma)$$

Likelihood

$$p(y \mid \theta, \mathsf{M}) = \frac{|\Sigma(\theta)|^{-1/2}}{(2\pi)^n} \exp\left[-\frac{1}{2}[y - q(\theta \mid \mathsf{M})]^T \Sigma^{-1}(\theta)[y - q(\theta \mid \mathsf{M})]\right]$$

Parameter Estimation

Posterior PDF $p(\theta \mid y, M) = \frac{\begin{array}{c} \text{Likelihood} & \text{Prior PDF} \\ p(y \mid \theta, M) & \pi(\theta \mid M) \\ p(y \mid M) \\ \hline p(y \mid M) \\ \hline \text{Evidence} \end{array}$

Model Prediction Error Equation

Data = Model Predictions + Error

$$y = q(\theta | M) + e e^{e} e^{e} + e^{m} \sim N(0, \Sigma)$$

Likelihood

$$p(y \mid \theta, \mathsf{M}) = \frac{|\Sigma(\theta)|^{-1/2}}{(2\pi)^n} \exp\left[-\frac{1}{2}[y - q(\theta \mid \mathsf{M})]^T \Sigma^{-1}(\theta)[y - q(\theta \mid \mathsf{M})]\right]$$

Model Class Selection

$$\Pr(\mathsf{M}_i \mid y) = \frac{p(y \mid \mathsf{M}_i) \; \Pr(\mathsf{M}_i)}{f(y)}$$

$$p(y | M_i) = \int p(y | \theta_i, M_i) \pi(\theta_i | M_i) d\theta_i$$

Evidence

Parameter Estimation

Posterior PDF $p(\theta \mid y, M) = \frac{\begin{array}{c} \text{Likelihood} & \text{Prior PDF} \\ p(y \mid \theta, M) & \pi(\theta \mid M) \\ p(y \mid M) \\ \hline p(y \mid M) \\ \hline \text{Evidence} \end{array}$

Model Prediction Error Equation

Data = Model Predictions + Error

$$y = q(\theta | M) + e e^{e} e^{e} + e^{m} \sim N(0 \Sigma)$$

Likelihood

$$p(y \mid \theta, \mathsf{M}) = \frac{|\Sigma(\theta)|^{-1/2}}{(2\pi)^n} \exp\left[-\frac{1}{2}[y - q(\theta \mid \mathsf{M})]^T \Sigma^{-1}(\theta)[y - q(\theta \mid \mathsf{M})]\right]$$

Model Class Selection

$$\Pr(\mathsf{M}_i \mid y) = \frac{p(y \mid \mathsf{M}_i) \; \Pr(\mathsf{M}_i)}{f(y)}$$

$$p(y | M_i) = \int p(y | \theta_i, M_i) \pi(\theta_i | M_i) d\theta_i$$

Evidence

Prediction Error Correlation

OFTEN USED CASE: Spatially and temporally UNCORELLATED prediction errors

Bayesian Model Class Selection to select among a range of possible prediction error correlation classes and estimate parameters

Example: Damaged R/C Beam

Prediction Error Correlation Models

- A. **Uncorrelated: 3 parameters**
- **B. Exponentially Corr: 7 parameter**
- C. **Exponential Damped Cosine Corr: 11 parameters**

Correlation length depends on mode shape

MODEL CLASS 2-D Beam Element Model

150 Elements, 151 nodes

Damage identification Data: Lowest 4 modal frequencies and mode shapes

Demonstration: Beam model

Parameter Estimation

Posterior PDF $p(\theta \mid y, M) = \frac{\pi(\theta \mid M)}{p(y \mid M)} \frac{|\Sigma(\theta)|^{-1/2}}{(2\pi)^n} \exp\left[-\frac{1}{2}[y - q(\theta \mid M)]^T \Sigma^{-1}(\theta)[y - q(\theta \mid M)]\right]$ Evidence

ASYMPTOTIC APPROXIMATION

Gaussian Posterior PDF

Most Probable Model: $\hat{\theta} = \arg \min_{\theta} [-\ln p(\theta | y, M)]$ Covariance:

 $H(\theta)$ is Hessian of $-\ln p(\theta | y, M)$

Optimization problem

- Gradient-based [Adjoint, Model intrusive, Sequential]
- Stochastic: CMA-ES [Gradient-free, Model non-intrusive, Parallel]

CHALLENGES

- Multimodal PDF, Unidentifiable cases
- Moderate to high computational effort due to repeated system analyses

Parameter Estimation

SAMPLING ALGORITHMS (gradient free, model non-intrusive)

Samples drawn from Posterior PDF (e.g. using variants of MCMC) $\theta^{(i)} \sim p(\theta \mid y, M)$

CHALLENGES

- C1 (Computational): model complexity (large # of DOFs, Nonlinearities)
- C2 (Computational): single chain MCMC algorithms are sequential
- A1 (Algorithmic): multi-modal PDF, unidentifiable cases, peaked posteriors

EFFECTIVE ALGORITHMS: Transitional TMCMC (Annealing property)

Ching & Chen, ASCE Journal of Engineering Mechanics 2007

BUS (independent of number of uncertain parameters) Straub and Papaioannou ASCE Journal of Engineering Mechanics, 2015

Parameter Estimation

SAMPLING ALGORITHMS (gradient free, model non-intrusive)

Samples drawn from Posterior PDF (e.g. using variants of MCMC) $\theta^{(i)} \sim p(\theta \mid y, M)$

PARALLELIZATION – SURROGATES - SOFTWARE

- Multi-Chain, highly parallelized TMCMC, handle various parallelization levels

Angelikopoulos, Papadimitriou & Koumoutsakos, J Chemical Physics 2012

- Surrogate techniques: Adaptive kriging
- Improved with Langevin adjusted proposals (adjoint, model intrusive)
 X-TMCMC: Angelikopoulos, Papadimitriou & Koumoutsakos, CMAME 2015

Parameter Estimation

SAMPLING ALGORITHMS (gradient free, model non-intrusive)

Samples drawn from Posterior PDF (e.g. using variants of MCMC) $\theta^{(i)} \sim p(\theta \mid y, M)$

FURTHER IMPROVEMENTS IN TMCMC

- Betz, Papaioannou & Straub, ASCE J. Engineering Mechanics, 2016
- BASIS Bayesian Annealing Sequential Importance Sampling
 Wu, Angelikopoulos, Papadimitriou & Koumoutsakos, ASCE-ASME Journal of Risk and
 Uncertainty in Engineering Systems, Part B: Mechanical Engineering, 2016 (under review)

Parameter Estimation

ASYMPTOTIC APPROXIMATIONS

SAMPLING ALGORITHMS

[gradient free, model non-intrusive]

SOFTWARE

 Π4U, <u>HPC: Parallel Implementation</u> to optimally distribute the chains and repeated system simulations in a multi-host configuration of complete heterogeneous computer workers. http://www.cse-lab.ethz.ch/software/Pi4U
 Hadjidoukas, Angelikopoulos, Papadimitriou & Koumoutsakos, J Computational Physics 2015

Parameter Estimation

ASYMPTOTIC APPROXIMATIONS

SAMPLING ALGORITHMS

[gradient free, model non-intrusive]

MODEL REDUCTION

- <u>Component mode synthesis</u> (consistent with parameterization scheme) to drastically reduce the system & computational effort without sacrificing accuracy
 - Papadimitriou & Papadioti, Computer & Structures 2013
 - Jensen, Milas, Kusanovic, Papadimitriou, CMAME 2014
 - Jensen, Munoz, Papadimitriou, CMAME 2016

Application: Metsovo Bridge

- Total length: 537m long
- Deck width: 14m
- M1 height: 45m tall
- M2 height:110m tall
- M3 height: 35m tall
- Central span length: 235m long

FE Model of Metsovo Bridge

DOF: ~ 800,000 - 1,000,000

Largest FE size is limited by box cross-section thickness. FE size < 0.4m

Length scale (20 modes) > 50m

Component Mode Synthesis (CMS)

♦ COMPONENT/SUBSTRUCTURE LEVEL

- **•** Expand the solution within the component in a reduced base
 - Fixed-interface normal modes

- Retain a small number of eigenvectors (form the reduced basis) and eigenvalues,

Interface constrained modes

Model Updating using CMS

• COMPONENT PARAMETERIZATION $K = \overline{K} h(\theta_j)$

$$M = \overline{M} g(\theta_j)$$

Reduced mass and stiffness matrices at system level

$$K^{CB} = K_0^{CB} + \sum_{j=1}^{N_{\theta}} K_{1,j}^{CB} \frac{h(\theta_j)}{g(\theta_j)} + K_{2,j}^{CB} h(\theta_j)$$
$$M^{CB} = M_0^{CB} + \sum_{j=1}^{N_{\theta}} M_{1,j}^{CB} \sqrt{g(\theta_j)} + M_{2,j}^{CB} g(\theta_j)$$

Model Updating using CMS

Reduction of interface DOFs using characteristic interface modes Castanier et al., AIAA 2001

Model Updating using CMS

FE model: ~ 1,000,000 DOF Reduced model: ~ 500 DOF

Three orders of magnitude reduction of DOF for <0.1% accuracy

20 modes retained in analysis

Parameter Estimation using Vibration Data

Prediction error models: Spatially correlated

Model Class Selection

$$Pr(M_i | y) = \frac{p(y | M_i) Pr(M_i)}{f(y)}$$

Evidence $p(y | M_i) = \int p(y | \theta_i, M_i) \pi(\theta_i | M_i) d\theta_i$

SAMPLING ALGORITHMS

- Estimation of EVIDENCE requires special algorithms and extra system simulations
- <u>Transitional MCMC (TMCMC)</u>: EVIDENCE does not require extra system simulations

Applications

- SHM and damage identification

SHM of Bridge: Computational Effort

SHM of Bridge: Computational Effort

SHM of Bridge: Computational Effort

Bayesian Uncertainty Propagation

Posterior Robust & Hyper-Robust Predictions

$$E[G_q(\theta) | y, \mathsf{M}] = \int G_q(\theta | \mathsf{M}) \ p(\theta | y, \mathsf{M}) \ d\theta$$

Posterior PDF

- Mean
- Standard deviation
- Credible intervals
- Failure probability
- Robust optimization

Updating Structural Reliability

$$P_F(M) = \Pr(z \in F \mid M) = \int P_F(z \mid M) p(z \mid M) dz$$

- Stochastic excitation and uncertain model parameters
- <u>PRIOR</u>: Subset simulation
 Au and Beck, Probabilistic Engineering Mechanics, 2001
 Papaioannou, Betz, Zwirglmaier and Straub, Probabilistic Engineering Mechanics, 2015
- <u>POSTERIOR</u>: TMCMC samples are used at first stage of Subset simulation Jensen, Vergara, Papadimitriou, Milas, CMAME, 2013

Bayesian UQ+P: Hanger Axial Load Estimation

Giakoumi, Papadimitriou, Argyris, Spyrou, Panetsos, 8th GRACM Int Congress on Computational Mechanics 2015

ARCH bridge with 20 hangers

HANGER geometry & support conditions

MEASURED DATA

Six (6) modal frequencies per longitudinal and transverse direction

Axial Load Estimation

Geometric nonlinear computational mechanics

Estimation of Tangent Stiffness Matrix

Solution of Eigenvalue Problem

Concluding Remarks

- Unsuitable prediction error models (uncorrelated or correlated) may lead to misleading results in terms of posterior parameter uncertainty. This affects Bayesian uncertainty propagation, Bayesian optimal experimental design and decision making under uncertainty.
- > Computational demanding operations can be drastically reduced by integrating:
 - Model Reduction techniques (e.g. CMS with components consistent with the parameterization schemes)
 - Multi-chain MCMC (e.g. TMCMC, X-TMCMC) for parallel implementation in multi-core CPUs to efficiently distribute the large number of full system simulation runs
 - Surrogate models (adaptive kriging) for drastically reducing the number of full system simulation runs

THANK YOU!