

Optimal inspection strategies in structural systems

Daniel Straub & Jesus Luque Engineering Risk Analysis Group Technische Universität München

Presented by Elizabeth Bismut

Optimal inspection planning – a system problem

Objective: Minimize total expected lifetime cost and risk of the system

Inspection parameters:

- When?
- Where?
- What?
- How?

Optimal inspection planning – a system problem

Objective: Minimize total expected lifetime cost and risk of the system

Inspection parameters

•	When?	A high-dimensional optimization problem
•	Where?	Ideally solved quantitatively
•	What?	A few deterioration mechanisms and possible inspection methods
		Identified by expert assessment
•	How?	identified by expert assessment

Goal: Planning based on detailed models

Optimal inspection planning – a sequential decision problem

- Decisions are made at multiple times.
- Future inspection outcomes have an effect on the optimality of previous decisions
 - \rightarrow exponential complexity

A generic decision tree

A generic decision tree

Optimal inspection planning – a sequential decision problem

- Optimal solutions can be found with **POMDP** or **LIMID**
- These approaches at present are limited to single components and/or simple models

Heuristic approaches at the component level

Threshold approach

Constant inspection intervals

Optimal inspection planning at the component level

• Simple heuristics have shown to give results comparable to POMDP/LIMID

Nielsen & Sorensen (2015). Proc. ICASP

Luque & Straub (2013). Proc. IPW

Optimal inspection planning at the component level

• The heuristics lead to "simple" problems

Component level solutions cannot be directly extended to the system level

because

- 1. Computational efforts to compute $E[C_T]$ increase drastically
- 2. Heuristics are more difficult to define

Optimal inspection planning – a sequential system decision problem

The combination of a sequential decision problem with a system analysis leads to problems whose **computation is more than challenging**

Proposed solution:

- 1. Use of heuristics for defining inspection-repair strategies at the system level
- 2. Bayesian network to compute system failure probability conditional on inspection results
- 3. Monte-Carlo approach to integrate over future inspection results

Mathematical formulation of the optimization

Total life-time risk:

$$R_F(\mathcal{S}, \mathbf{Z}) = \sum_{t=1}^{T} c_F(t) \cdot \Pr(F_t | \mathcal{S}, \mathbf{Z}_{0:t-1}) \qquad \text{Bayesian network}$$

Total life-time cost and risk:

$$C_T(\mathcal{S}, \mathbf{Z}) = C_I(\mathcal{S}, \mathbf{Z}) + C_R(\mathcal{S}, \mathbf{Z}) + R_F(\mathcal{S}, \mathbf{Z})$$

Expected total life-time cost and risk:

$$\mathbf{E}[C_T] = \mathbf{E}_{\mathbf{Z}}[C_T(\mathcal{S}, \mathbf{Z})] = \int_{\Omega_{\mathbf{Z}(\mathcal{S})}} C_T(\mathcal{S}, \mathbf{z}) f_{\mathbf{Z}}(\mathbf{z}) d\mathbf{z} \qquad \text{Monte Carlo}$$

Optimal inspection-repair strategy:

$$S^* = \arg \min_{S} E_{\mathbf{Z}}[C_T(S, \mathbf{Z})]$$
 Heuristics with few parameters

DBN model (component level)

Time-invariant parameters

Time-variant parameters

Deterioration function

Component condition

Observations

Hierarchical DBN model (system level)

Updated system reliability

Updated reliability of an inspected component

Updated reliability of a non-inspected component

Mathematical formulation of the optimization

Total life-time risk:

$$R_F(\mathcal{S}, \mathbf{Z}) = \sum_{t=1}^{T} c_F(t) \cdot \Pr(F_t | \mathcal{S}, \mathbf{Z}_{0:t-1}) \qquad \text{Bayesian network}$$

Total life-time cost and risk:

$$C_T(\mathcal{S}, \mathbf{Z}) = C_I(\mathcal{S}, \mathbf{Z}) + C_R(\mathcal{S}, \mathbf{Z}) + R_F(\mathcal{S}, \mathbf{Z})$$

Expected total life-time cost and risk:

$$\mathbf{E}[C_T] = \mathbf{E}_{\mathbf{Z}}[C_T(\mathcal{S}, \mathbf{Z})] = \int_{\Omega_{\mathbf{Z}(\mathcal{S})}} C_T(\mathcal{S}, \mathbf{z}) f_{\mathbf{Z}}(\mathbf{z}) d\mathbf{z} \qquad \text{Monte Carlo}$$

Optimal inspection-repair strategy:

$$S^* = \arg\min_{S} E_{\mathbf{Z}}[C_T(S, \mathbf{Z})]$$
 Heuristics with few parameters

Heuristic at the system level

- 1. Inspection campaigns are performed at fixed intervals ΔT
- 2. The number of inspected components in each campaign is n_I
- Components are selected for inspection following their Value of Information (or a proxy thereof)
- 4. If a threshold on the system reliability p_{th} is exceeded, an additional inspection campaign is carried out
- 5. Repairs of components are carried out if observed damages exceed a repair criterion d_R

Resulting optimization variables:

• Δ*T*

• *p*_{th}

• d_R

Case study - Daniels system

Elizabeth Bismut (TUM) | Optimal inspection strategies

DBN model

Probabilistic model

Random variable	Distribution	Mean	Std. deviation	Correlation
Ν	Deterministic	10		
Т	Deterministic	40		
α_{D_0}	Normal	0	1	
α_M	Normal	0	1	
α_K	Normal	0	1	
<i>D_{i,0}</i> [mm]	Exponential	1	1	0.5
$M_{i,0}$	Normal	3.5	0.3	0.6
M _{i,t}	$M_{i,t} = M_{i,t-1}$			
ln C _{i,t}	$\ln C_{i,t} = -3.34M_{i,t} - 15.84$			
ΔS_i	Weibull	K _i (scale	$\lambda_i = 0.8$	
	1	parameter)	(shape parameter)	
$\Delta S_{e,i}$	$\Delta S_{e,i} = K_i \Gamma \left(1 + \frac{M_i}{\lambda_i} \right)^{A_i}$			
<i>K</i> _{<i>i</i>,0}	Lognormal	1.6	0.22	0.8
K _{i,t}	$K_{i,t} = K_{i,t-1}$			
<i>d</i> _{<i>C</i>} [mm]	Deterministic	50		
ξ [mm]	Deterministic	10		

Elizabeth Bismut (TUM) | Optimal inspection strategies

Cost model

Cost	Case 1 (offshore structure)	Case 2 (bridge structure)
Inspection campaign, c_I	1	1
Component inspection, c_{Ic}	0.1	0.5
Component repair, <i>c_{Rc}</i>	0.3	10
System failure, c	10^{4}	10 ³
Discount rate, r	0.02	0.02

Mathematical formulation of the optimization

Total life-time risk:

$$R_F(\mathcal{S}, \mathbf{Z}) = \sum_{t=1}^{T} c_F(t) \cdot \Pr(F_t | \mathcal{S}, \mathbf{Z}_{0:t-1}) \qquad \text{Bayesian network}$$

Total life-time cost and risk:

$$C_T(\mathcal{S}, \mathbf{Z}) = C_I(\mathcal{S}, \mathbf{Z}) + C_R(\mathcal{S}, \mathbf{Z}) + R_F(\mathcal{S}, \mathbf{Z})$$

Expected total life-time cost and risk:

$$\mathbf{E}[C_T] = \mathbf{E}_{\mathbf{Z}}[C_T(\mathcal{S}, \mathbf{Z})] = \int_{\Omega_{\mathbf{Z}(\mathcal{S})}} C_T(\mathcal{S}, \mathbf{z}) f_{\mathbf{Z}}(\mathbf{z}) d\mathbf{z} \qquad \text{Monte Carlo}$$

Optimal inspection-repair strategy:

$$S^* = \arg\min_{S} E_{\mathbf{Z}}[C_T(S, \mathbf{Z})]$$
 Heuristics with few parameters

Updating with simulated inspection results

Example $Pr(F_t | \mathbf{Z}_{0:t-1})$:

Updating with simulated inspection results

Corresponding conditional component reliabilities

Costs associated with an inspection history

Integrating over inspection results

In the order of 10^2 to 10^3 simulated inspection histories are necessary for accuracy

Optimal strategies

- Case 1
- Threshold $p_{th} = 2 \times 10^{-5}$

Optimal strategies (case 1)

 $p_{th} = 10^{-5}$

■ Failure risk Component repair □Component inspection □ Inspection campaign

Failure risk 15 10

 $p_{th} = 3 \times 10^{-5}$

 $p_{th} = 2 \times 10^{-5}$

Number of inspected components, n_1 =1,2,...,10

Elizabeth Bismut (TUM) | Optimal inspection strategies

 $p_{th} = 10^{-5}$

Expected total cost

■ Failure risk Component repair □Component inspection □ Inspection campaign

Number of inspected components, $n_l=1,2,...,10$

Current case study

- Zayas frame
- Pushover analysis to determine ultimate capacity
- 13 critical members are considered
- Two hotspots per member
- Value of information estimated based on:
 - $\Pr(F_i|\mathbf{Z})$
 - Criticality of members
 - Redundancy factor
 - ...

Conclusion

- Pragmatic solution based on combining:
 - Bayesian network (for fast reliability updating with inspection results)
 - Monte Carlo sampling (for integrating over inspection histories)
 - Heuristics (to reduce solution space of the optimization)
- Investigations into the optimality of the proposed heuristics for general structural systems are necessary

References

Luque J., Straub D.: Reliability analysis and updating of deteriorating structural systems with dynamic Bayesian networks. *Structural Safety*, in print.

Luque J., Straub D.: Risk-based optimization of inspection strategies in structural systems, in preparation.

Luque J., Straub D. (2013). Algorithms for optimal risk-based planning of inspections using influence diagrams. *Proc. 11th Probabilistic Workshop*, Brno, Czech Republic.

Straub D., Der Kiureghian A. (2011). Reliability Acceptance Criteria for Deteriorating Elements of Structural Systems. *ASCE Journal of Structural Engineering*, **137**(12): 1573–1582.

Straub D., Faber M.H. (2005). Risk Based Inspection Planning for Structural Systems. *Structural Safety*, **27**(4), pp 335-355.

Thank you for your attention