# **Robotic Technologies** for Structural Health Monitoring

Lazaros Nalpantidis, Assoc. Professor Aalborg University Copenhagen

lanalpa@m-tech.aau.dk

TU 1402 5th COST Workshop — 25 August 2016





### About me

**Lazaros Nalpantidis** who? **Cognitive Robotics & Robot Vision** what? where? **Robotics, Vision & Machine Intelligence Lab.** Dept. of Mechanical & Manufacturing Eng. Aalborg University Copenhagen

#### Some history

- -2003, BSc in Physics @AUTH, Greece
- -2005, MSc in Electronic Eng. @ AUTH, Greece
- -2010, PhD in Robot Vision @ DUTH, Greece
- -2012, Postdoc @ KTH, Sweden
- -2014, Assist. Professor @ AAU-CPH
- -now, Assoc. Professor @ AAU-CPH





## About our Lab.

RVMI (Robotics, Vision and Machine Intelligence lab.)

- @ CPH, Sydhavn
- invovlevement/coordination of multiple EU/national research project
- · 4 Profs. 1 postdoc 4 PhD studs 2 research assists
- multiple robots

http://rvmi.aau.dk/



### research project assists



### About our Lab.

• RVMI (Robotics, Vision and Machine Intelligence lab.)







AALBORG UNIVERSITY

## About our Lab.

- RVMI (Robotics, Vision and Machine Intelligence lab.)
  - expertises:
    - Visual Sensing & Perception
    - Industrial Robots
    - Drones and aerial manipulation
    - Machine Learning and Artificial Intelligence



## the Question

Why Use Robots for Structural Health Monitoring?

"Working in height is 1 of the top 3 reasons for fatal accidents", (ERF 2016)

- safer
- cheaper
- systematic, objective
- environmentally healthy



### the Need

- Need for Structural Health Monitoring
  - according to Wikipedia:
    - SHM: the process of implementing a damage detection and characterization strategy for engineering structures.
    - ...observation of a system over time...
    - ...periodically updated...
    - ... measurements from an array of sensors...
    - ...analysis of these features to determine the current state...



## the Applications

- Bridges and dams
- Buildings and stadiums
- Vessels and platforms
- Wind turbines
- Large machinery and equipment
- Railways
- Large Pipelines



## OUTLINE

- Robots
- Sensors
  - Visual / Multimodal Sensing & Perception
  - 3D Sensing
  - Tactile Sensing
- Relevant Research Projects
- State-of-the-Art Technologies
  - Computer Vision
  - Machine Learning
  - Aerial Manipulation
- Summary and Discussion



## ROBOTS



- 2 main types of Drones
  - Rotorcraft UAV
  - Fixed-Wing UAV







# no human onboard Fully Autonomous Operation

human involvement







- Typical specs
  - autonomy: up to 1 hour
  - payload: up to 15 Kg
  - speed: up to 70 Km/h (not all of them at the same time!!)
- Features
  - Waypoint navigation
  - Sensor mount stabilization
  - Multiple sensors
  - Built-in collision avoidance
  - Wind Compensation





Multispectral Imaging



from: <u>www.sensefly.com</u>





- Inspection
  - protected rotors
  - onboard navigation cameras
  - ultrasonic sensors







- Inspection
  - close-up inspection (collision tolerance!)



#### from: <u>www.flyability.com</u>





### **Mobile Robots**





AALBORG UNIVERSITY

### **Mobile Robots**



#### from: <u>www.robo-spect.eu</u>



### **Mobile Robots**

- similar to drones
  - however, manipulation with Mobile Robots are much easier





- Plethora of available sensors
  - Vision
    - Still HD images
    - Video streams
    - 3D sensors
      - large scale 3D reconstruction
      - comparison against 3D models
    - Multispectral Imaging (IR, thermal, ...)
    - Tactile Sensors
    - Force/Torque Sensors



KINECT

#### **3D** sensors

• Stereo



Structured light





• LIDAR







Tactile Sensors















#### **ROBOTIC INSPECTION** with Mobile Robots

- · ROBO-SPECT FP7 http://www.robo-spect.eu/
  - fully automated tunnel inspection system
- PETROBOT FP7 http://petrobotproject.eu/
  - "aims to develop a series of (small mobile) robots which can be used by inspectors to conduct remote inspection of pressure vessels and storage tanks widely used in the oil, gas and petrochemical industry"
- TUNCONSTRUCT FP6
  - Robots monitoring and inspecting cracks in underground structures







#### **ROBOTIC INSPECTION AND MAINTENANCE with Drones**

- · AEROBI H2020
  - Aerial Robotic System for In-Depth Bridge Inspection by Contact
    - Sensors (Cameras, Lasers, Ultra-sonic sensors) + Robotic Arm
    - Non-destructively measure the depth of cracks and deformation
    - Accessibility without heavy scaffolding/ropes/elevators (quick & safe)
    - Reduced road closing time
    - Less equipment needed
    - Faster inspection with 3D mapping capabilities
    - Quick structural assessment
    - Reduced cost

obotic Arm deformation ors (quick & safe)



#### **ROBOTIC INSPECTION with Drones**

- · AEROWORKS H2020 http://www.aeroworks2020.eu
  - Collaborative Aerial Robotic Workers
    - multiple heterogenous drones
    - dexterous manipulation
    - advanced perception

for inspection and maintenance.



AALBORG UNIVERSITY

### **ROBOTIC INSPECTION with Drones**

- · AEROARMS H2020 http://www.aeroarms-project.eu
  - Drones with
    - multiple arms
    - advanced manipulation capabilities
    - for inspection and maintenance

grab and dock with one arm... and perform dexterous accurate manipulation with another arm



### **ROBOTIC INSPECTION with Drones**

- ARCAS FP7 http://www.arcas-project.eu/
  - Multiple drones with manipulators, cooperating for
    - assembly and
    - structure construction









### **COMPUTER VISION**

### 3D sensing - 3D reconstruction



DEPARTMENT OF ICAL AND MANUFACTURING ENGINEERING ALBORG UNIVERSITY

### **COMPUTER VISION**

- 3D sensing SLAM 3D reconstruction
  - Drones:
    - image stabilization
    - unknown cam position
    - how to plan efficient paths





AALBORG UNIVERSITY

### **COMPUTER VISION**

- Image Processing for Inspection
  - based on pixel intensity and spatial relations
  - morphological operations
  - filtering
  - shape analysis

no need for annotated data



### **COMPUTER VISION**

- Digital Image Correlation
  - Known to the Computer Vision community under other names!
    - Many pixel/patch similarity measures (Cross-correlation is just one)
    - Many linear/no-linear optimization techniques
    - Techniques to compensate
      - different view points
      - varying illumination conditions

### her names! rrelation is just one)



### **Machine Learning - Artificial Intelligence**

- Beyond sensing...
  - How can you tell a crack on a concrete wall from sensor data?
    - A system should be able to learn this (as a human expert does)

### sor data? expert does)



### **Machine Learning - Artificial Intelligence**

### **Positive Examples**



### **Negative Examples**







### **Machine Learning - Artificial Intelligence**

- Supervised Learning
  - Classification (crack / no crack)
  - Regression (severity 0%-100%)

- based on some hand-crafted features (edges, Points of Interest, Texture,...)
- need for MANY annotated data
- the system can continue learning during its lifetime!



### **Machine Learning - Artificial Intelligence**

- Deep Learning
  - can the system come up with good features without our supervision (unsupervised feature learning)?
  - Deep Learning has been successfully applied to many vision problems (e.g. autonomous driving)



**Aerial Manipulation** 

- In Structural Health Monitoring we are usually targeting Non-Destructive Testing.
  - Visual Inspection is often not enough
  - Physical interaction is some times required
  - Crack dimensions require contact
    - ultrasonic Time of Flight (stable contact) between the transducer and the surface)
    - Piezoelectric MEMS "needles"





## **SUMMARY & DISCUSSION**



# **SUMMARY & DISCUSSION**

- Flight Duration is it enough to perform our intended tasks?
  - better batteries
  - multiple drones working serially or in parallel
- Are inspection results reliable and reproducible?
- Can we perform inspection in real-time (or fast enough?)
- Data Overflow huge amount of generated data
  - semantic inspection
  - can an autonomous robot tell what is important and just focus on that?
- What are possible through synergies between Civil Eng. and Roboticists?





## **THANKS !!**

**Robotic Technologies** for Structural Health Monitoring

> Lazaros Nalpantidis, Assoc. Professor Aalborg University Copenhagen

> > lanalpa@m-tech.aau.dk

TU 1402 5th COST Workshop — 25 August 2016