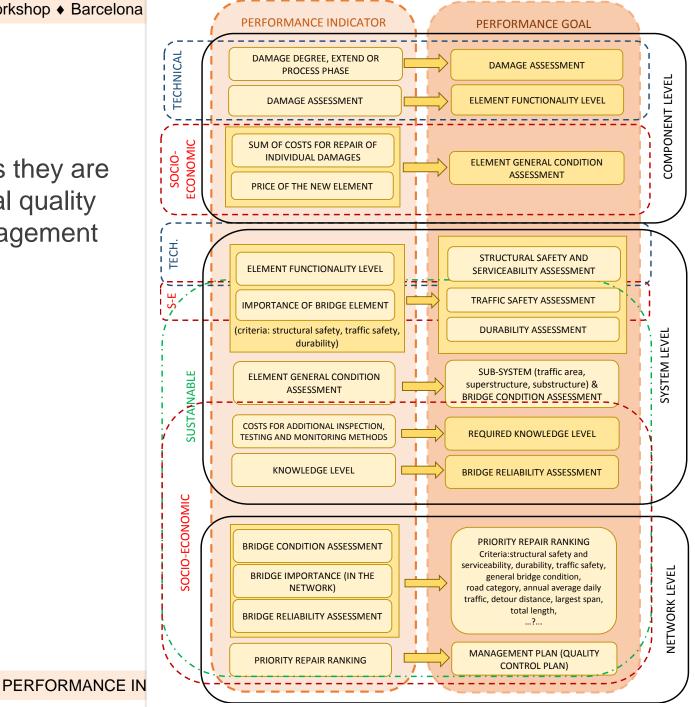


Performance indicators for road bridges

Alfred Strauss, Ana Mandić Ivanković, Helder Sousa, University of Natural Resources and Life Sciences, Wien Faculty of Civil Engineering, University of Zagreb BRISA S.A., 2785-599 S. Domingos de Rana, Portugal University of Surrey, Guildford, Surrey GU2 7XH, United Kingdom

OVERVIEW


- $PI \leftrightarrow PG$
- Clustering and categorisation of PI

- Overview for roadway bridges, based on results of the screening process of the inspection and evaluation documents performed so far under the auspices of COST action TU 1406
- Collection and categorisation of PI is ongoing, particularly in the area of researchbased indicators.
- Critical overview and feedback in the developed PI database is still under progress.
- Damage assessment
- Further steps

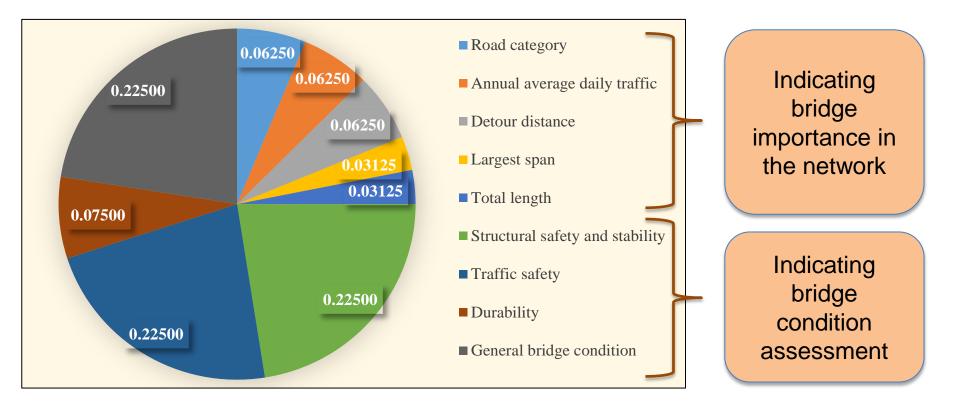
$PI \leftrightarrow PG$

 interactions are contemplated, as they are crucial for optimal quality control and management of road bridges

$\mathsf{PI} \leftrightarrow \mathsf{PG} \colon \mathsf{COMPONENT} \mathsf{ LEVEL}$

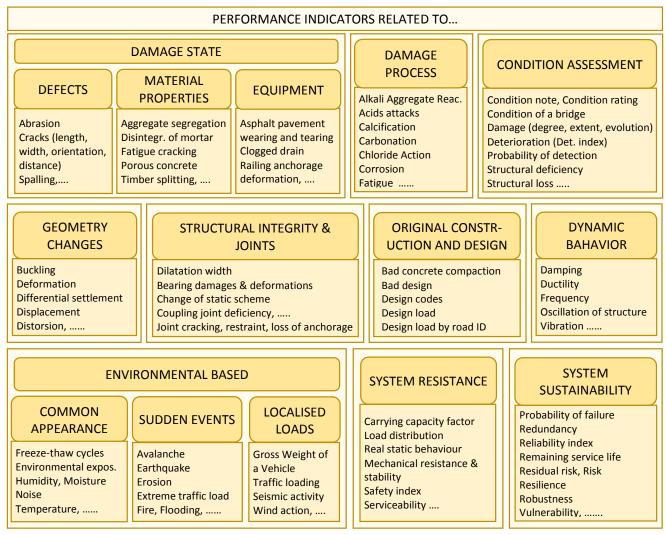
• Inspection carried out by components forming three main sub-systems

Substructure	Superstructure	Roadway + equipment	
Foundations (concrete)	Superstructure (reinforced concrete)	Pavement	
Deep foundations, piles (concrete)	Superstructure (prestressed concrete)	Curb & Cornices	
Deep foundations, piles (steel)	Superstructure (steel)	Railings & anchorage, barriers	
Deep foundations, piles (timber)	Superstructure (composite)	Sidewalk (Pedestrian walkway)	
Abutments (concrete)	Superstructure (timber)	Bearings	
Abutments (masonry)	Superstructure (brick)	Expansion joints	
Piers (concrete)	Superstructure (stone)	Drainage	
Piers (steel)	Arch (concrete)	Lighting	
Piers (masonry)	Arch (masonry)	Signalization	

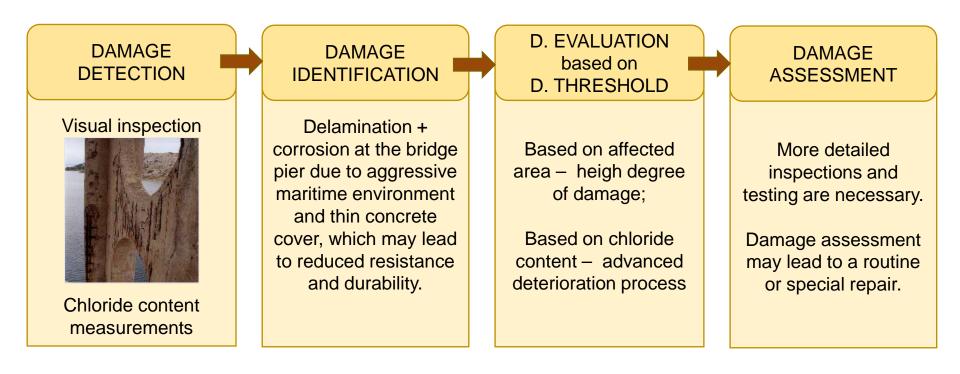

$\mathsf{PI} \leftrightarrow \mathsf{PG}: \mathsf{SYSTEM} \mathsf{ LEVEL}$

• Importance of the component to evaluate impact to the entire structure

Structural safety criteria	Traffic safety criteria	Durability criteria		
collapse of particular element				
have no influence to the bridge safety	has no influence to traffic flow 1	have no influence to durability of other components		
railing, curb, embankment,	cornices,	railing, main girder, arch, pier, foundation,		
has influence to a part of a 2 bridge structure	causes speed limitation 2	will cause reduced durability of 2 other components		
cornices, cross girders, bearing, abutment wing,	sidewalk with barrier,	expansion joint, pavement, curb, drain, embankment		
has influence to an entire bridge structure 3	causes local traffic redirection 3			
main girders, arch, pier, abutment wall, foundation,	sidewalk, embankment, curb, drainage, 			
	complete traffic suspension 4			
	barriers, pavement, expansion joint, roadway slab, wing,			


$PI \leftrightarrow PG$: NETWORK LEVEL

• Example of weight of performance criteria for priority repair ranking


CLUSTERING OF PI

- to more easily identify:
 - their origin,
 - methods and procedures for their revealing and quantification
 - level and extend of their influence to a certain structural performance type

DAMAGE ASSESSMENT

• ... implies detection of damages as well as their identification and evaluation.

DAMAGE ASSESSMENT

- Four main approaches in damage detection are:
 - visual inspection,
 - non-destructive testing,
 - probing and
 - SHM.

EXAMPLE OF DAMAGE CATEGORISATION

Damage type (characteristics)	Damage indicator	Damage detection	Damage threshold	Damage evaluation
Abrasion	Affected area (m2) +	Visual inspection + Direct	Classes / upper value +	Grades according to
Abrasion	Affected depth (cm)	measurement	damage phase duration	handbook of damages
Cavities	Speed of reflected signal	Acoustic emission		Results analysis
	Resonance in amplitude- frequency spectra	Impact-echo test		Results analysis
	Affected area (m2)	Visual inspection + Direct measurement	Classes	Grades according to handbook of damages
	Percentage of damaged		Upper values of the	Grades according to
	cross section of	Specialist detailed inspection	phase + damage phase	handbook for
	reinforcement (%)		duration	assessment
	Physical parameter	In situ testing		Testing analysis
Corrosion	Potential (mV)	Half cell potential measurements	Classes and lower limit	Evaluate risk of corrosion
	Chloride content (%)	Probing at concrete samples in laboratory	Critical value	Quantitative analysis
	Carbonization depth (mm)	Laboratory testing of collected material	carbonization depth limit	Evaluate risk of corrosion
		Corrosion Monitoring systems		Monitoring of corrosion progress
Cracks -	Crack width (mm)	Visual inspection + Direct	Classes / upper value +	Grades according to
		measurement	damage phase duration	handbook of damages
	Crack width/depth	Ultrasonic velocity test	Upper limit	Testing analysis
	Existence	Hammer sounding		
		SHM of cracking		Monitoring of cracks evolution

EXAMPLE OF DAMAGE CATEGORISATION

Damage type (characteristics)	Damage indicator	Damage detection	Damage threshold	Damage evaluation
Abrasion	Affected area (m2) +	Visual inspection + Direct	Classes / upper value +	Grades according to
	Affected depth (cm)	measurement	damage phase duration	handbook of damages
Cavities	Speed of reflected signal	Acoustic emission		Results analysis
	Resonance in amplitude-			Results analysis
	frequency spectra			
	Affected area (m2)	TU 1402 related task:		Grades according to
	` ´ _			handbook of damages
	Percentage of damag	Identify PI that		Grades according to
	cross section of	of detected/evaluated and		handbook for
	reinforcement (%) possibly quantified			assessment
	Physical parameter	with available SHM technologies		Testing analysis
Corrosion	Potential (mV)		echnologies	Evaluate risk of
				corrosion
	Chloride content (%)	Probing at concrete samples in laboratory	Critical value	Quantitative analysis
	Carbonization depth (mm)	Laboratory testing of collected	carbonization depth limit	Evaluate risk of
		material		corrosion
		Corrector Manitoring automa		Monitoring of corrosion
		Corrosion Monitoring systems		progress
Cracks	Crack width (mm)	Visual inspection + Direct	Classes / upper value +	Grades according to
		measurement	damage phase duration	handbook of damages
	Crack width/depth	Ultrasonic velocity test	Upper limit	Testing analysis
	Existence	Hammer sounding		
		SHM of cracking		Monitoring of cracks
		Shivi or cracking		evolution

EXAMPLE OF DAMAGE CATEGORISATION

Damage type (characteristics)	Damage indicator	Damage detection	Damage threshold	Damage evaluation
Delamination	Affected area (m2) +	Visual inspection + Direct	Classes	Grades according to
	Affected depth (cm or mm)	measurement		handbook of damages
Deflection	Long-term deflection	Visual inspection + Direct (periodic long lasting) measurement	Upper limit	Monitoring of deflection evolution
	Damage degree	Visual inspection	Classes	Damage catalogue
Fatigue		Fatigue damage or fatigue cracks		Monitoring of fatigue
		sensors		damage evolution
Insufficient	Affected area (m2)	Visual inspection + Direct	Classes	Grades according to
concrete cover		measurement		handbook of damages
Insufficient	Physical parameter	Probing		Probing analysis
concrete quality		Rebound hammer		
	Hydraulic inadequacy, depth	Direct measurement	Upper limit	Inspection
Scour	Differential rotation +	Direct measurement	Upper limit	Monitoring of score
	displacements			criticality
	Differential settlement	Direct measurement	Upper limit	Monitoring of score
	Differential Settlement	Direct measurement		criticality
		Scour monitoring devices		Monitoring of score
				criticality
Spalling	Affected area (m2) +	Visual inspection + Direct	Classes	Grades according to
	Affected depth (cm or mm)	measurement		handbook of damages

2.

FURTHER STEPS

overview of PI in bridge management domain

3.

identify all PI that may be detected/evaluated and possibly quantified with available SHM technologies quantify relations between indicators and levels of their contribution to a certain structural performance assessment (PG)

to extend PI ↔ PG to the performance assessment of structures in general

surveying of research-based PI

those that may be put in practice those in whose development is worth investing 4. improve existing structural performance assessment methods

Performance indicators for road bridges

Thank you for your attention!

PERFORMANCE INDICATORS FOR ROAD BRIDGES
Strauss
Mandic Ivankovic
Sousa