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Objective

e Address short- and long-term effects of measurements/monitoring of
structural response

 lllustrate effects of monitoring/measurements for a few examples
— Riser angles at flex-joint
— Ship in arctic areas

e Measurements in relation to condition monitoring and prediction
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Rise Monitoring-Background

Original design parameters no longer valid
— Larger BOPs

— Larger vessels in harsher weather

More BOP days
— Increased utilization of each well

Increased attention to wellhead fatigue as phenomenon over the past
few years
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Introduction

Modelling methodology vs full-scale measurements
— Represent physical structure in a best possible way

— External loading Buoyancy joints
— Vessel motion

L~

Recommended practice
— Sub-divide marine riser and

Slick joints

F] ——>

wellhead
» Global model of marine riser LMRP

e Local model of wellhead and
soil interactions

Wellhead — =
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Full-scale setup

o Aker H-3 rig at 325 meter water depth in the North Sea

* Angle of marine riser above Lower Flex Joint (LFJ)
— Inertial Measurement Units (IMU) to measure angles
— Loads on wellhead derived from the angle.

Simplified model of forces acting on the
wellhead datum

P

Overview over IMU location at the Lower

Marine Riser Package (LMRP) Barcelona 2016




Long-crested waves?

 Random by nature
— Significant wave height
— Mean wave period
— Wave spreading
— Mean wave direction

e Bivariate Gaussian distribution

— Projecting planes
» Standard deviation
» Cycle counting

Rotated about Z axis 0 [deg)
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Marine riser model

* Modelled in RIFLEX (from Marintek)
Unidirectional JONSWAP waves
Unidirectional Torsethaugen waves

Investigation of wave spreading
effect on riser response

Linear vs non-linear flex joint
characteristics on riser response

Mean Sea Level

Buoyancy joints 274320m

* Riser angle above LFJ

— Near boundary, i.e. highly dependent Q nion
on boundary conditions F—E

LMRP

BOP 6.908m

wellhead ——— 3434m
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Full-scale — Long-term angle distribution

Angle spectrum
e Angle distribution
— Cycle counting

— 248 hours distributed over 2
months

» Shape typical for offshore
loading situation

— Weibull fit possible
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Full-scale — Spectral densities
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(¢) Third hour

3 consecutive hours
— Same variance — different shape

Wave frequencies
— Clearly visible first 2 hours

Low frequencies
— Last hour low frequency dominated
— Periods ~1-2 minutes
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Model — Response spectrum

No low frequency response

Two peaks In response spectral density (for Torsethaugen
spectral model)

Slow-drift motion not included in analyses

Spectrum

[rad s*-1]




@ NTNU

Comparing long-term angle distributions

* Weather from 1 direction vs 4 directions
— Weighted accoring to hindcast data

o Differences between full-scale and simulations

*  Riflex data 4 dir.
*  Riflex data 1 dir.
*  Full scale data
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Comparison — Standard deviation

e Full-scale
— Horizontal solid line: Mean of all standard deviations
— Dashed lines: 2 x standard deviation confidence interval

Hs: 4, Tp:12

=
-~

JONSWAR, unidir,

Tarsethaugen, unidir,
Torsethaugen, unidir., nl spring
Torsethaugen, spreading
Torsethaugen, spreading, ML spring

&

o
(a3}
L]

&

o
[y}
1

=
'

Standard deviation

o ©
w o
1 T

%

W 40 s 6o
Mean heading direction




Comparing short-term angle distributions ®NTNU

e Full-scale
— Selected from measurements with very little low-frequency energy

e Riflex
— Used same sea state based on hindcast data

*  Full scale
* RIFLEX
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Conclusions, riser monitoring

Comparison made of standard deviation and cycle distribution for

angular response

Including more realistic conditions narrows the gap to the full-scale

measurements

— Wave spreading

— Weather direction

— Material properties (non-linear flex joint)

Angle distributions still not directly comparable
— Both max angle range and shape are different
— Low frequency motion should be adressed
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Ice-induced forces: Data from KV
Svalbard 2007 expedition.

(a)

. . . .

__|* The shear strain measured is converted into shear stress.
‘. .

» The total shear force Q on the frame obtained by

integration.

» The ice force F computed from the difference between the
shear forces at the upper and lower part of the frame Q2-

QL.
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Initial/parent distribution of the ice load peak
process.
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What Is the statistical model for this process?

DECISION THEORY
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A single or a compound population?
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A generalized model is proposed: a proportional combination of
two one-parameter exponential models. Barcelona 2016
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Conditional distribution for a given

stationary condition
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EXTREME

How do we predict the short term extreme values?

Ice thickness (m)
Ice force (kKN/m)

A [ AL 1: A g MH :.

11:10 11:12 11:14 11:16 11:18
8 1794 2707 3604 4501
Case: 18 (broke nice, original series) Time(28.03.2007)

H;.,=0.45m; §;,,,=0.17m; C=100.00%

Fig. 9. Ice induced loads represented as stem plots and ice profile for the selected time interval.

Procedure:

» The time history is divided into one minute intervals.

* The maxima in each interval are identified.

o Apply statistical inference - Type | extremal distribution.




i : Exponential

#h: 3-Ex ponential
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(a) Exponential vs. data
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(¢) 3-Exponential vs. data
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(b) Weibull vs. data
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(d) Asymptotic vs. data

EXTREME

Comparison:
asymptotic & exact
vs. data

 The return period
T, varies
according to the
duration of the
time series.
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Long term statistics: all peak amplitude versus 2alliss

m-nautical mile maximum approaches.
/
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(b) m-nautical mile maximum approach.
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Prediction of Extreme Loads and Fatigue
Damage for a Ship Hull due to Ice Action

CONCLUDING REMARKS:

M Initial/parent distribution of the ice load peak process.
M Short term extreme statistics of the ice load.

M Long term extreme statistics of the ice load.

O Fatigue damage prediction due to ice action.

Credits: A. Renner (blogs.esa.int)
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Concluding remarks, overall

Instrumentation technology increasingly advanced

Monitoring and data acquisition greatly facilitated and can be
performed both on-line and off-line

Application to two different types of structures is illustrated

Important to identify which failure modes that can be monitored and
that can not be monitored for a given instrumentation system
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