COST TU1402: Quantifying the Value of Structural Health Monitoring



DECISION THEOR

HEALTH

with comments by M.G. Masciotta, Univ. Minho, Guimaraes

COSI

#### **General overview**

 Masonry construction - long history, scatter of properties (age, region-specific constituents, manufacturing)
 → crucial to obtain case-specific information

• The key material property – **compressive masonry strength** 

• For heritage structures, non- or minor-destructive tests (NDTs, MDTs) commonly applied along with a few DTs **uncertainty of spot monitoring?** 

• "In some cases, destructive tests may be necessary to calibrate NDT" - ISO 13822

## Asset information

- No information or previous measurements related to material properties (guidance for both cases should be provided) – at least NDTs needed
- Hygrometric and salt content information (typically less informative) may be available
- As built information may be available (geometry, construction phases, structural system)
- Demands: permanent loads, imposed and environmental loads
- Codes: Eurocodes, ISO 13822

## **Structural performance**

- Limit state function based on the *compressive masonry strength f* 
  - Compression with small eccentricity; large eccentricity or horizontal forces – deformation characteristics and tensile strength derived from f
  - o Standards EC6, ISO 13822, DIN 1053
  - $\circ R(f, b,..) E(G, Q,..) = 0$
- The compressive strength of masonry depends on the compressive strength of *mortar* and of *masonry units* (stone, bricks)

# **Optimisation of monitoring strategy - ideas**

- 1. Quantification of uncertainties in NDTs validated by several DTs ( $n_{\text{DT}} = 0..\sim 10$ ) for homogeneous material
- 2. Consideration of measurement uncertainty in reliability analyses of masonry members exposed to imposed and climatic actions (no seismic actions)
- 3. Simplified optimisation reliability to comply with a target level  $\beta_t$  given in standards (next slide)
- 4. A detailed, full risk pre-posterior analysis could later improve the results of the preliminary optimisation.
  Failure consequences over a reference period (both inputs difficult to assess)

6

#### **Current status**

- Database of 14 historic stone and brick masonry structures from the 17th to the 20th century
- Schmidt hammer and modified drill tests verified by DTs of masonry units

| No. | Use of building               | Built in                        | Masonry units     | Number of measurements |                      |                    |
|-----|-------------------------------|---------------------------------|-------------------|------------------------|----------------------|--------------------|
|     | -                             |                                 | -                 | DT                     | Schmidt <sup>*</sup> | drill <sup>*</sup> |
| 1   | vicarage                      | $17^{\text{th}}$                | sandstone         | 3                      | 3                    | 3                  |
| 2   | church**                      | $17^{\text{th}}$                | sandstone         | 11                     | 11                   | 11                 |
|     |                               |                                 | bricks            | 6                      | 6                    | 6                  |
|     |                               |                                 | pudding stone     | 1                      | 1                    | 1                  |
| 3   | printing works <sup>***</sup> | 1930s                           | bricks            | 18                     | 18                   | 17                 |
| 4   | residential                   | end of 19 <sup>th</sup>         | bricks            | 4                      | 4                    | 4                  |
| 5   | offices, storage              | 1890                            | bricks            | 6                      | 6                    | 3                  |
| 6   | monastery, barrack            | 1638                            | bricks            | 11                     | 10                   | 8                  |
|     | -                             |                                 | marlstone         | 3                      | 3                    | 3                  |
| 7   | offices, archive              | early 20 <sup>th</sup>          | bricks            | 4                      | 4                    | 2                  |
|     |                               | -                               | marlstone         | 2                      | 2                    | 0                  |
| 8   | textile mill                  | second half of 19 <sup>th</sup> | bricks            | 6                      | 6                    | 4                  |
| 9   | boiler house                  | 1959                            | bricks            | 4                      | 4                    | 1                  |
|     |                               |                                 | unspecified stone | 1                      | 1                    | 1                  |
| 10  | water mill                    | 1930                            | bricks            | 4                      | 4                    | 4                  |
|     |                               |                                 | unspecified stone | 1                      | 1                    | 0                  |
| 11  | residential                   | 1867                            | bricks            | 6                      | б                    | 3                  |
|     |                               |                                 | granite           | 1                      | 1                    | 0                  |
| 12  | engineering works             | 1870                            | bricks            | 5                      | 5                    | 5                  |
| 13  | residential                   | 1890                            | bricks            | 2                      | 2                    | 0                  |
|     |                               |                                 | marlstone         | 1                      | 1                    | 0                  |
| 14  | residential                   | 1871                            | bricks            | 6                      | 6                    | 0                  |

Table 1: Basic information about the experimental database for strength of masonry units.

#### Test uncertainty

 $\theta = f_{b,DT} / f_{b,NDT}$ 



- Both methods poorly calibrated doubtful to use only NDTs for assessment.
- Outlying observations removed DT strengths above 40 MPa beyond NDT calibration curves NDT leading to unrealistic zero values (local damage)

21

## Uncertainty in mean strength estimate – hammer



•  $\varepsilon$ -characteristics independent of mean and CoV of  $f_b$  (in ranges of practical relevance)

• Similar results for the drill

## **Uncertainty in mean strength estimate – mortar**



- No DTs available for an existing structure → use of database for calibration
- Simulations:
  - representative strength  $f_{\rm m} = 1$  MPa, CoV = 20/30/40%
  - $n_{\rm NDT} = 5..30$
- Error in mean estimate:  $\varepsilon = f_m / [\eta \times \text{mean}(ndt_i)]$



# VoI flow chart

Abbreviations

DT destructive test NDT non-destructive test ULS ultimate limit state

#### **Remedial actions**

 If code requirements are NOT fulfilled, the structure is strengthened (short or long-term perspective)

#### Indicators

- Compressive strength of masonry units (NDT, DT) and mortar (NDT)
- Crack widths, deformations; natural frequencies



# **Vol analysis implementation**

- 1. NDTs are necessary.
- 2. Focus on one example.
- 3. Make assumptions for  $C_{\text{test}}(\text{DT})$  and  $C_{\text{f}} \rightarrow \text{How to}$  estimate *failure consequences*? For which *reference period*?

Lower bound estimates - insurance, structural costs of replicas, inverse cost optimisation corresponding to accepted target reliability

- 4. ,No action' alternative: reliability analysis based on  $NDTs - LSF: Kf_b^{0.7} f_m^{0.3} \text{ geo} - E$
- 5. Optimisation of  $n_{\text{DT}}$ :  $Kf_{b}(n_{\text{DT}})^{0.7} f_{\text{m}}^{0.3}$  geo E $C_{\text{tot}} = C_{\text{test}}(\text{DT}) + C_{\text{f}} P_{\text{f}}(\text{ref period})$

## **CASE STUDY BRIEF**

- 1. It is essential to obtain case-specific information on historic masonry properties.
- 2. Crude estimates obtained by non-destructive tests NDT can be improved by calibration using DTs.
- 3. The calibration by two-three DTs significantly improve structural reliability estimates.

18



## Thank you for your attention.

