Case Study Bridge proposed for further Vol analysis

10th Workshop of the COST Action TU 1402 *Quantifying the Value of Structural Health Monitoring* November, 2017

Dominik Skokandić Ana Mandić Ivanković University of Zagreb, Faculty of Civil Engineering Croatia

Aleš Žnidarič Slovenian National Building and Civil Engineering Institute Slovenia

DECISION THEOR

VALUE OF STRUCTURA HEALTH

Introduction

- Main purpose prove that initial investment in SHM will result in:
 - Extended bridge service life
 - Overall more sustainable bridge management
- Monitoring data:
 - Obtained with Bridge Weigh-in-motion measurements (B-WIM):
 - Traffic information:
 - Volume, weight, speed etc.
 - Bridge structural data:
 - Realistic influence lines
 - Girder distribution factor
 - Dynamic amplification factor
- Post processing of monitoring data:
 - Site-specific traffic load model
 - Improved bridge numerical model

Introduction

- Bridge description:
 - Simply supported highway bridge
 - Single span of 24,8 meters
 - Superstructure 5 prestressed I-type girders and monolithic deck
 - Original designs and reinforcement drawings available from the archives

DECISION THEORY

- Bridge selection:
 - Subject of COST TU1402 supported STSM at ZAG, Slovenia:
 - Visual inspection report
 - Long term monitoring data
 - Detailed numerical model calibrated with monitoring data STSM report
 - Traffic load model for different time periods
 - Detailed assessment results

DECISION THEORY

- Load carrying capacity assessment :
 - Bending and shear resistance based on built in reinforcement
 - Deterministic approach M_{Rd}/M_{Ed} and V_{Rd}/V_{Ed} ratio
 - Probabilistic approach resulting reliability index β for bending and shear

• Limit State Function:

$$Z = \theta_R \cdot M_{Rd} - \theta_E \cdot M_{Ed}$$

- Critical failure mode bending in the middle of the span
- M_{Rd} girder cross section resistance to bending M_{Ed} and V_{Rd}/V_{Ed} ratio
- M_{Ed} bending moment in the middle of the span
- θ_R model uncertainty for resistance
- θ_E model uncertainty for loading

Variables of Limit State Function RESISTANCE

Variable	Units	Distribution
Girder height	<i>h</i> [m]	Deterministic
Concrete cover	<i>c</i> [m]	Normal
Number of bars / girder	n _b	Deterministic
Number of tendons / girder	ng	Deterministic
Diameter of bar	$\Phi_b[\mathbf{m}]$	Deterministic
Yield strength of reinforc. steel	$f_{\rm y} [{\rm kN/cm^2}]$	Normal
Area of rebar	$A_{\rm s} [{\rm cm}^2]$	Normal
Diameter of tendon	$\Phi_t[\mathbf{m}]$	Deterministic
Effective depth of tendons	<i>d</i> [m]	Normal
Tensile strength of prestress. steel	fypk [kN/cm ²]	Normal
Area of tendon	$A_{\rm p} [{\rm cm}^2]$	Normal
Resistance uncertainty	θ_R	Lognormal

Skokandic D., Faculty of Civil Engineering, University of Zagreb, Croatia

Variables of Limit State Function LOADING

Variable	Units	Distribution
Concrete density	$\gamma_{\rm C} [kN/m^3]$	Lognormal
Bridge span	<i>L</i> [m]	Deterministic
Girder cross section area	<i>A</i> [cm ²]	Normal
Deck height	<i>h</i> d [m]	Deterministic
Deck width	<i>b</i> d [m]	Deterministic
Additional permanent load	$\Delta M_{\rm g} [{\rm kNm}]$	Normal
Traffic load – EN 1991-2	$M_{\mathrm{T},1}$ [kNm]	Gumbel
Traffic load – B-WIM	<i>M</i> _{T,2} [kNm]	Gumbel
Dynamic amplification factor	DAF	Gumbel
Permanent load uncertainty	$ heta_{E,G}$	Lognormal
Traffic load uncertainty	$ heta_{E,Q}$	Lognormal

• Assessment results:

• Reliability index for bending (obtained with FORM analyis)

• Results analysis:

- Clear quantification of B-WIM measurements as a part of SHM
- Foundation for further analysis of Case Study Bridge trough Vol analysis

a) Decision maker

- Bridge owner national Road Directorate no additional stakeholders
- Main objectives (owner's perspective):
 - Optimization of bridge management system
 - Priority ranking of bridge maintenance
- Objectives are achieved trough:
 - Normal and steady traffic flow
 - Extended bridge service life
- Conclusion:
 - Additional investments in SHM tools and advanced calculation procedures can be justified by fulfilling these objectives, and by that, minimizing the cost of bridge management.

b) Regulative constraints

- Investment cost:
 - Increase in initial investment
 - Minimizing overall cost of bridge management trough time
- Closing bridge for traffic owner's income and reputation loss:
 - B-WIM minimum interference with traffic flow
 - Visual inspection during calibration
 - Bridge re-opened in few hours

c) System and spatial boundaries

- Bridge selection:
 - B-WIM system can be used on variety of bridges
 - Not limited by the dimensions and bridge types
- Requirements:
 - Qualified personnel for installation and data post-processing
 - Additional knowledge for advanced calculation methods

DECISION THEORY

d) Events of interest

- Assessment according to valid codes simple calculation
- Assessment according to short term B-WIM measurements
- Assessment according to long term B-WIM measurements

e) Consequences

- Based on whether B-WIM data is used or not:
 - Unnecessary vs. necessary bridge strengthening
 - Appropriate vs. unsuitable bridge strengthening
 - Unnecessary vs. necessary traffic restriction
 - Minor or no action vs. medium or major measures on bridge before next assessment (e.g. in 5 years)
 - Money loss vs. money saving

DECISION THEORY

f) Indicators to observe

- Structural response:
 - Realistic influence lines
 - Girder distribution factors
 - Dynamic amplification factors DAFs
- Traffic data:
 - Development of site-specific traffic load model
- Resulting indicator:
 - Reliability index basis for the further decisions regarding the bridge

g) Decision alternatives – monitoring and/or inspection

- Bridge requirements:
 - Based on visual inspection and preliminary assessment
 - B-WIM measurements different time periods
 - Threshold values for indicators

DECISION THEORY

h) Decision alternatives – other measures, repair, replacement, etc.

- Multi level assessment method based on B-WIM:
 - Monitoring data requirements
 - Advanced calculation methods
 - Increased bridge reliability
- Bridge do not meet minimum requirements:
 - Redefine the use of the bridge
 - Impose a traffic weight restriction
 - Bridge strengthening
 - Demolition and total replacement of the bridge

DECISION THEORY

Flow chart for Vol analysis

Knowledge on decision context

- National Road Directorate is sole owner and operator of the proposed Case Study bridge.
- Bridge is part of the infrastructure network of capital significance.
- Main interest is to ensure normal and steady traffic flow to avoid income (toll) and reputation loss
- Bridge should fulfill all (SLS and ULS) requirements.

Objectives

inspection

system

Extend bridge service life

maintenance/inspection costs

Optimized bridge management

Minimize traffic interruption during

Minimize operational/

Avoid reputation loss

Asset information

- Highway bridge (24,8 m)
- Service life 100 vears

Remedial actions Do nothing -bridge fulfilled Eurocode thresholds (ULS and

- SLS)
- Impose a traffic restriction
- Strengthening (FRP or additional prestressing)

Indicators

- Measured influence line
- Girder distribution factor
- DAF (dynamic amplification factor)
- Site specific traffic load model
- Reliability index

Decision Tree for Vol analysis

STRATEGIES

- Assessment without SHM
- Assessment with SHM level 1
- Assessment with SHM level 2

SHM types

- SHM level 1
 - Short time B-WIM
 - Structural data
- SHM level 2
 - Long time B-WIM
 - Structural dana
 - Dynamic characteristic
 - Traffic model

Skokandic D., Faculty of Civil Engineering, University of Zagreb, Croatia

Decision Tree for Vol analysis

SHM OUTCOMES

- R1 improvement in reliability
- R2 no improvement in reliability

IMPORTANT

- SHM uncertanties
- SHM costs
- SHM time and type tresholds

Skokandic D., Faculty of Civil Engineering, University of Zagreb, Croatia

Decision Tree for Vol analysis

ACTIONS

- A1 no repair
- A2 repair

A2 - REPAIR TYPES

- Bridge strengthening
- Weight restriction
- Bridge replacement

A2 - CONSEQUENCES

- Road closing
- Traffic jams
- Loss of money
- Loss of reputation

VALUE OF STRUCTURAL HEALTH MONITORING

Decision Tree for Vol analysis

SYSTEM STATES

- S1 bridge safe
- S2 bridge not safe

S2 – DIRECT CONSEQUENCES

- Road closing
- Bridge collapse
- Human casualties
- Loss of money
- etc.

S2 – INDIRECT CONSEQUENCES

- Traffic jams on alternate routes
- Loss of reputation
- etc.

Critical appraisal, simplifications

- Vol analysis requirements:
 - Complete assessment on each level
 - Results and substantial costs included
 - Evaluation of bridge importance on the network level
 - Consequences of eventual bridge closing
 - Alternate traffic routes
- Simplifications:
 - 3D bridge numerical model \rightarrow 2D girder numerical model
 - Assumptions of bridge importance based on similar bridges data

DECISION THEORY

Conclusions and further steps

• **General conclusion** – contribution of B-WIM measurements as a part of SHM in bridge management is proven.

- Advantages of proposed Case Study Bridge:
 - Case Study Bridge evaluated during the STSM
 - Complete multi level assessment results available
 - 3D numerical model available
- Further steps and requirements:
 - Detailed cost and feasibility analysis of all parameters
 - Setting up Vol analysis additional knowledge?

Thank you for your attention!

Case Study Bridge proposed for further Vol analysis

Dominik Skokandić Ana Mandić Ivanković University of Zagreb, Faculty of Civil Engineering Croatia

Aleš Žnidarič Slovenian National Building and Civil Engineering Institute Slovenia