

COST Action TU1402: 1st Workshop on Quantifying the Value of Structural Health Monitoring Lyngby. 04 – 05 May 2015

RISK REDUCTION THROUGH MONITORING OF ROAD BRIDGES

Peter Tanner. Miguel Prieto

- Inspections and basic requirements
- Monitoring plan
- Example
- Final remarks

EDUA DO TOI ROJA

REQUIREMENTS

- Structures are to be designed, built, used and maintained in such a way that they
 - Remain fit for the use for which they are planned
 - Sustain all actions and influences likely to occur during execution and use
 - Requirements can be achieved by adopting measures
 - Technical or organizational measures
 - Measures referring to all stages of the whole process
 - → E. g. risk control by means of inspections, warning systems, ...

Inspections and basic requirements

NON-COMPLIANCE OF REQUIREMENTS

- Different causes may lead to the non-compliance of any particular requirement
 - Deviations from expected actions
 - Geotechnical actions
 - Environmental influences
 - Dynamic actions
 - Deviations from expected resistance
 - Loss of load bearing capacity due to accidental actions
 - Loss of resistance due to deterioration mechanisms such as corrosion or fatigue
 - Others
- Quantification of parameters related to such influences may provide evidence about the degree of compliance
- Indicators, in analogy with economy or medicine

FATIGUE AS AN EXAMPLE FOR DETERIORATION MECHANISMS

4

- Repeated variable loads on bridges
- Initiation and propagation of fatigue cracks is possible

Inspections and basic requirements

TWO CONDITIONS FOR FATIGUE FAILURE

Initiation and propagation of cracks

Inspections and basic requirements

TWO CONDITIONS FOR FATIGUE FAILURE

Influence of inspections on probability of failure

$$P_{f,insp} \approx P_f \cdot (1 - P_{det}) \leq P_{f,adm}$$

- P_f may be determined by applying probabilistic methods
 P_{f,adm} is related with acceptable risks
 - **P**_{det} depends on inspection strategy: technique, frequency

- Inspections and basic requirements
- Monitoring plan
- Example
- Final remarks

EDUA DO TOI ROJA

INDICATORS

- Quantification may refer to different system parameters related with
 - Geometry
 - Materials
 - Actions and influences
 - Structural behaviour
 - Choice of parameters depending on the sensitivity of structural reliability to their variation
- Most sensitive parameters depend on
 - Structural system and behaviour
 - Intended use of the structure
 - Exposure conditions
 - Materials
 - Available data acquisition system

PRACTICAL TOOLS FOR ROAD BRIDGES

- Definition of indicators related with different requirements
- Establishment of threshold values by applying normal structural analysis methods
- Determination of admissible average frequencies for outcrossing

FIBER OPTIC SENSORS

- Developments originally intended for, but not limited to, monitoring by using fiber optic sensors
- Properties of sensors measuring the intensity of light
 - Excellent signal-to-noise ratio and no electromagnetic interference
 - Static and dynamic measurements offering high precision of the order of 0,001 mm
 - No loss of origin 0
 - Long service period of >20 years
- Advantages
 - Continuous data acquisition is possible
 - Continuous comparison with threshold values
 - Alarm in case of outcrossing
 - Adoption of measures depending on the type of non-compliance
- → Automation is possible

REQUIREMENTS, INDICATORS AND THRESHOLD VALUES

Developed criteria depending on the failure consequences

Material independent requirements

Demand		Consequences	Requirement	Indicator	Threshold			
					Value		Mean frequency	
					$E_{\text{ser,lim}}; C_{\text{ser,lim}}$		$\omega_{ m ser}$	
SLS	Appearance	Reversible	Deformations	Deflection	L/700 ¹⁾		50 % of time	
	Appearance	Reversible	Deformations	Strain	$E_{\rm ser,lim,2}$		50 % of time	
	Comfort	Reversible	Deformations	Deflection	L/1000 ²⁾		Weekly	
	Comfort	Reversible	Deformations	Strain	$E_{ m ser,lim,1}$		Weekly	
	Comfort				$a_v^{(3)}$	$a_h^{(3)}$		
	– Maximum	Reversible	Vibrations	Acceleration	0,5	0,1	19 71	
	– Medium				1,0	0,3	2 	
	– Minimum				2,5	0,8	-	

Demand				-	Threshold	
		Consequences	Requirement	Indicator	Value <i>E_{d,lim}</i>	Mean fr. <i>ø</i> d
NLS	Structural reliability	Reversible	Safety of structure and facilities	Traffic loads ¹⁾	$E_{d, lim, 1}$	Weekly
	Structural reliability	Reversible	Safety of structure and facilities	Strain	$E_{d, lim, 1}$	Weekly
	Structural reliability	Irreversible	Safety of people	Traffic loads ¹⁾	$E_{d, lim, 0}$	Yearly
	Structural reliability	Irreversible	Safety of people	Strain	$E_{d, lim, 0}$	Yearly

THRESHOLD VALUES RELATED WITH STRUCTURAL SAFETY

Quantified parameters indicate acceptable reliability if

$$E_{mon} \leq E_{d,\lim}$$

 $E_{mon} > E_{d,lim} \text{ with } \omega_{mon} < \omega_{d}$ - **Example**

$$E_{d,\lim,0} = E\left(\sum_{j\geq 1} \gamma_{G,j} \cdot G_{k,j} + \gamma_P \cdot P + \gamma_{Q,1} \cdot \psi_{0,1} \cdot Q_{k,1} + \sum_{i>1} \gamma_{Q,i} \cdot \psi_{1,i} \cdot Q_{k,i}\right)$$

$$\omega_d : \text{annually}$$

Threshold values depend on stage when monitoring starts

- Inspections and basic requirements
- Monitoring plan
- Example
- Final remarks

IMPLEMENTATION OF A MONITORING AND ALARM SYSTEM

- Doubts about structural safety of an existing bridge
- Deck constituted by continuous five-span composite girder
 - Total length 316 m: 40 68 100 68 40 m
 - Deck width: 30,1 m
 - Tricellular steel box girder of varying height: 2250 mm to 4550 mm
 - 0,22 m deep reinforced concrete slab with prestressing over piers
 - Cantilevers rest on composite ribs
 - Deck supported by 4 piers and 2 abutments

Example

INSTRUMENTATION

- Installation of fiber optic sensors in 3 cross-sections: <a>S
- Indicator: strains
- In addition, temperature measurement in the box girder:

RESULTS

- For illustration purposes, consider results for the bottom flange over pier P1 → negative sign for compression
- Continuous record since 20/12/2013
- → Green signal

- Inspections and basic requirements
- Monitoring plan
- Example
- Final remarks

FINAL REMARKS

- Rational tool for risk control
- Contributes to the optimization of operation costs for infrastructures, new or existing
 - Instrumentation cost for the considered example 55.700.- €
 - Expected number of fatalities in case of collapse of S3
 9 fatalities
 - → Investment in preventing premature death
 6.190.- €
- → Comparison: in Western countries, life saving costs of the order of 3.000.000.- € are deemed reasonable
- Saved resources are available for different purposes

