COST TU1402: Quantifying the Value of Structural Health Monitoring 1st Workshop, 04.-05.05.2015, DTU, Denmark

WG 3: Methods and Tools

Presented by Daniel Straub (TUM) & Eleni Chatzi (ETH)

Outline

- 1. State of the art, problems and solutions
 - a. Translating data into information
 - b. Quantifying and optimizing the value of information
- 2. Goals of WG 3
- 3. Organization of WG3
- 4. Poster session

Example framework for implementation on WT facilities

(Spiridonakos & Chatzi, 2015)

Part 1a: Translating data into information

Data Acquisition **Novel Sensor Technologies**

Force

Acceleration

Displacement

Meteo

Data from GPS

Structural Condition information conveyed through low-cost sensory feedback.

Data Acquisition

Testing Methods

Marine Structures Testing Lab (MaSTeL) – Rizzo et al. (poster) \geq

4 feb am ship evolution trial main wave direction

ccelerati

Hull pressures, strain and motion - 2004

measurement

measurement

Laboratory of Drives and Experimental Automation \triangleright for Marine Systems-Ravinaet al. (poster)

Selection of appropriate indicators and monitoring techniques

Poster by Andrade et al.

Methods for understanding and quantifying the quality of the data

Probability of False Alarm (PFA)

 \blacktriangleright Poster by O'Byrne et al.

General purpose methods for Bayesian inverse analysis

Credible intervals are provided along with the estimates.

Alternative Approach: Model falsification Methods (Goulet & Smith, 2012)

Bayesian inverse analysis: prior model + data (likelihood) → posterior model

x

General purpose methods for Bayesian inverse analysis

- Analytical solutions
- Markov Chain Monte Carlo (MCMC)
- Laplace methods of asymptotic approximation
- Sequential Monte Carlo methods (e.g. TMCMC)
- Advanced rejection sampling (e.g. BUS)

Bayesian parameter estimation based on vibration measurements

Poster by Papadimitriou et al.

Beam flexibility? Motivating example: Bayesian analysis using deformation measurements

Linear problem with Gaussian priors and likelihood → analytical solution is available

Straub D. & Papaioannou, J Engineering Mechanics (2015).

Bayesian vs maximum likelihood

Bayesian methods regulate the problem and give credible intervals

Straub D. & Papaioannou, J Engineering Mechanics (2015).

Markov Chain Monte Carlo

• Without monitoring:

• With monitoring data:

Markov Chain Monte Carlo

- Powerful general purpose methods
- Difficulties in higher-dimensional problems
- Included in more tailored methods

Sequential Monte Carlo methods e.g. TMCMC

• Sampling density sequentially approaches posterior density

BUS: Bayesian Updating with Structural Reliability (an advanced rejection sampling approach)

Parameter identification in a 2 DoF system Illustrative example from Beck and Au (2002)

BUS Subset algorithm Subset simulation level 1

Straub D. & Papaioannou, J Engineering Mechanics (2015).

BUS Subset algorithm Subset simulation level 2

Straub D. & Papaioannou, J Engineering Mechanics (2015).

BUS Subset algorithm Subset simulation level 3

Straub D. & Papaioannou, J Engineering Mechanics (2015).

BUS Subset algorithm Subset simulation level 4: final samples

Straub D. & Papaioannou, J Engineering Mechanics (2015).

BUS Subset algorithm Subset simulation level 4: final samples

Straub D. & Papaioannou, J Engineering Mechanics (2015).

Bayesian networks graphical modeling tool with computational advantages

Bayesian networks

- Computationally efficient because of independence assumptions
- Generalization of Markov chain
- Inference:
 - Exakt methods (require linear Gaussian models or discretization)
 - approximate methods (sampling, e.g. MCMC-Gibb's sampler)

DBN model for fatigue of the system

Material parameter

Stress parameter (Equivalent Stress range)

Deterioration (crack length)

Observations

Component condition

Number of failures

System condition

A redundant structural system with 100 elements

(inspecting 10% of components every 10 years)

System Identification

is the process of developing or improving the mathematical representation of a physical system using experimental data.

System Identification in SHM

Structural models may be obtained

Analytically + experimental fine tuning Experimentally (structural identification)

Information to be extracted: stiffness, strength, modal frequencies & shapes, damping 30

[t]: discrete time ..., -2, -1, 0, 1, 2, ... corresponding to ..., $-2T_s$, $-T_s$, 0, T_s , $2T_s$, ... (T_s : sampling period)

Random (stochastic) excitation: wind, turbulence, traffic, earthquake, combined effects due to various sources, road or rail irregularities, and so on.

Random (stochastic) noise: instrument noise, discretization noise, modelling errors environmental effects and disturbances, interferences.

The structural system: Assumed to be deterministic usually (but not necessarily) and either linear & time invariant (stationary) or nonlinear

Classification of available System ID methods

Extensions to non-linear and non-stationary structures

Example Application: Bayesian Approximations

Predict

Assuming the prior $p(x_0)$ is known and that the required pdf $p(x_{k-1}|y_{1:k-1})$ at time k-1 is available, the prior probability $p(x_k|y_{1:k-1})$ can be obtained sequentially through prediction (**Chapman-Kolmogorov equation**):

$$p(x_k|y_{1:k-1}) = \int p(x_k|x_{k-1})p(x_{k-1}|y_{1:k-1})dx_{k-1}$$

Update

Consequently, the prior (or prediction) is updated using the measurement y_k at time k, as follows (**Bayes Theorem**):

$$p(x_k|y_{1:k}) = p(x_k|y_k, y_{1:k-1}) = \frac{p(y_k|x_k)p(x_k|y_{1:k-1})}{p(y_k|y_{1:k-1})}$$

Example Application: Bayesian Approximations

- Assume all random variable statistics are Gaussian (GRV)
- The optimal minimum mean square error estimate, \hat{x}_k such that $E[x_k \hat{x}_k] = min$, is given by:

$$\mathbf{\hat{x}_k} = ($$
optimal prediction of $\mathbf{x_k}) + \mathit{K}_k(\mathbf{y_k} -$ optimal prediction of $\mathbf{y_k})$ (

EKF: Propagation of a GRV through the first-order linearization of nonlinear state space model at current state.

UKF: Uses a deterministic sampling approach (UT) and then propagates these samples through the true non-linear system.

Sequential Monte Carlo Methods (Particle Filters): Use a large number of weighted particles, concentrated in regions of high probability.

Linear Systems

Particle based methods- Structure

Application: Join state and parameter Identification for linear or nonlinear systems

Application: Semi-active control via MR Dampers

Test Case: Shear frame vibration mitigation

Joint Input & State Estimation for prediction of Fatigue Accumulation

- **Fatigue prediction**
- Strain-stress time history
- State time history

[Azam, Chatzi, Papadimitriou, MSSP 2015]

Novelty/Feature Extraction methods

Changes due to environmental conditions must be distinguished from those induced by damage.

State-of-the-art

Multi-models

A conventional model is identified for each operational condition. Regression or interpolation is then used. (Worden et al. 2002, Sohn et al. 1999, Peeters et al. 2001, Kim et al. 2006)

Feature extraction

Extract features sensitive to damage but insensitive to environmental conditions.

- Pattern recognition technique (PCA, Factor analysis, and other; Deraemaeker et al. 2008, Kullaa 2006, Sohn et al. 2002)
- Subspace model based residual techniques (Balmés et al. 2008)

Functional models

Data from various experiment are processed together. A global model with functional dependence of its parameters on the measured environmental conditions is estimated. *(Lekkas et al. 2009)*

Novelty/Feature Extraction methods

The Polynomial Chaos Expansion approach

(Spiridonakos & Chatzi, 2013)

Novelty/Feature Extraction methods

Affoltern Bridge (ÜF Bärenbohlstr. Schweiz)

Infante D. Henrique Bridge (Porto 2007-2009)

Repower Wind Turbine in Lübennau

Blue: measured

Red: validation set

Green: prediction set

Z24 bridge (Switzerland 1998)

PCE error

-2

Frequency evolution vs. time (see the temperature influence)

15

07.09

Rupture of tendons I

Overarching Question:

How to exploit the developed methods and extracted indices for decision making on life-cycle management?

Part 1b: Quantifying and optimizing the value of information State of the art

- Bayesian decision analysis framework
- Modeling and computational challenges
 - Identification of decision alternatives
 - Life-cycle modeling
 - System modeling
 - Demanding physical models
 - No models available a-priori
- Existing strategies to deal with these challenges
 - Smart sampling strategies
 - Simplified decision rules
 - Sensor placement strategies
 - POMDP
 - LIMID

a) Decision tree

a) Decision tree

$$e_{opt} = \max_{e} \int_{Z} f(z|e) \left[\max_{a} \int_{X} u(x, a, z, e) f(x|a, z, e) dx \right] dz$$

Raiffa, H., and Schlaifer, R. (1961). Applied statistical decision theory, Harvard University, Boston,.

a) Decision tree

b) Influence diagram

Challenge: Identification of decision context

49

Challenge: Large number of possible decision alternatives over the life-cycle

Challenge: System modeling

 In a system, the number of possible system states, as well as possible decision alternatives, grows exponentially with number of components

Challenge: demanding physical models

Number of model evaluations must be limited

Concise model of aircraft operation For optimizing the monitoring system

> Poster by Cottone et al.

Optimize monitoring systems in aircraft structures

Concise decision models

Poster by Schweckendiek

Stategy 2: Smart sampling techniques

- Importance sampling idea: focus samples in the region of interest (where decisions change)
- Further developments possible and necessary

Straub D. (2014). Value of Information Analysis with Structural Reliability Methods. *Structural Safety* 49: 75-86

Value of information as a function of measurement accuracy Results obtained with 10³ samples (for a reliability problem)

Strategy 3: Methods used for optimizing sensor placement

Deterministic Approach Effective Independence method (EFI), Driving point residue EFI method (EFI-DPR) Maximum kinetic energy method (MKE) Neural networks & combinatorial optimisation Worden, 2001)

Lack the possibility for UQ

Fisher information matrix [Krammer, 1991], [Shi et al., 2000] Bayesian Approach [Heredia-Zavoni and Esteva, 1998], [Papadimitriou & Beck, 1998], [Yuen, Katafygiotis, Papadimitriou & Mickleborough], [Flynn & Todd, 2010],

- \rightarrow Maintenance is (control) actions and inspections
- $\rightarrow\,$ Under constraints of money, time, labor, safety, environment, \ldots

Fully Observable MDP

A POMDP framework consists of the **tuple** $\{S, A, T, \Omega, O, R\}$, where

• S is the set of system states

Strategy 4: POMDP

- A is the set of actions
- $T: S \times A \rightarrow \Pi(S)$ is the transition model describing p(s'|s, a)
- Ω is the set of discrete observations
- $O: S \times A \to \Pi(\Omega)$ is the observation model describing p(o|s)
- R is the reward function as $r_a(s) \in \mathbb{R}$
- Discrete time steps

The updating of a given belief state using Bayes' rule is (continuous states):

$$b^{a,o}(s') = \frac{p(o|s')}{p(o|b,a)} \int_{S} p(s'|s,a) \ b(s)$$
(1)

61

The system state S is 1-dimensional with a range $0 \le s \le 1$. (0 for failure, 1 for optimal condition of the bridge), e.g. damage index through vibrational data (natural frequencies)

Cost for failure of the structure $C_{\text{failure}} = 1000$.

and

64

t_{i+1}

Stategy 5: LIMID – Limited Memory Influence Diagrams

- Include forgetting to facilitate computations
- Extension of BN

Taken from Nielsen and Sorensen (2010). Bayesian Networks as a Decision Tool for O&M of Offshore Wind Turbines Nielsen, Proc. ASRANet

Optimization of sensor interpretation through decision graph

Sättele M., Bründl M., Straub D.: Reliability and Effectiveness of Alarm Systems for Natural Hazards. *Reliability Eng & System Safety*, under review.

Discussion on content

- Did we leave out something?
- Should some methods / theories be ommited?
- Do you think that the focus is in the right direction?
- .

Considerations towards quantification

- In extracting quantifiable quantities, it is important to come up with suitable indicators. What should these address, to better satisfy the needs of owners/operators?
 Options could pertain to

 (a) safety;
 (b) serviceability;
 (c) availability, robustness;
 (c) the total LCC;
 (d) environmental efficiency: CO2 foot-print.
- Should the short (extreme events/damage) or long-term (deterioration/fatigue/operation under varying environmental conditions) aspect of monitoring be at the centre point?
- Should a segregation regarding dynamic and static monitoring be made?
- How to best cross-compare available alternatives? Can we create a computational or field testing benchmark?

Goals of the WG 3 (to be discussed)

- Compilation of the state of the art
 - Years 1&2
 - -> review & discussion paper
- Improved methods and tools:
 - Year 1-3 (with WG 2&4):
 - Motivate and support the development of new and improved methods and computation tools
 - Develop joint proposals to support this task
- Repository
 - Years 1-4
 - Establish an online repository of tools, publications and teaching materials

Organisation

- Preliminary time plan (until summer 2016)
 - Preparation of a draft overview report by a core team
 - Workshop in early 2016, with presentations on different methods and a discussion of the draft report
 - Finalizing the review in summer 2016
- One core team responsible for the review
- One core team responsible for the online repository
- Initatives and contributions from everyone are welcome!