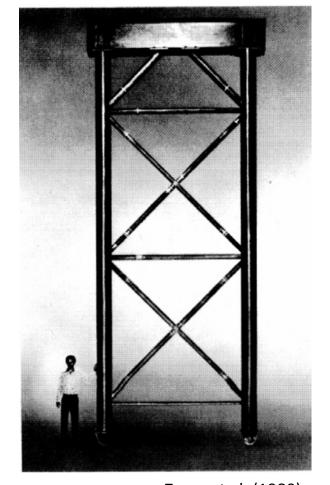


System reliability updating of welded jacket-type structures subjected to fatigue with global monitoring information

Ronald Schneider


SAFEINFRA Group, BAM Federal Institute for Materials Research and Testing

Sebastian Thöns

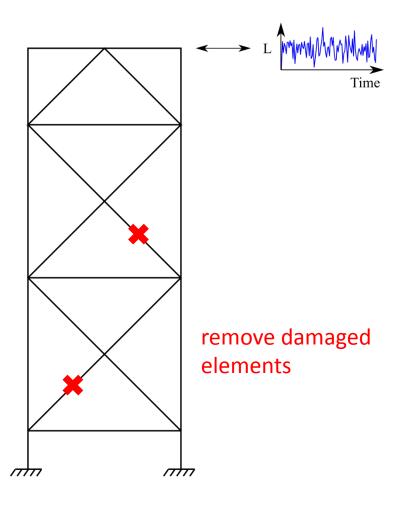
CERDA Group, DTU Technical University of Denmark

Daniel Straub

ERA Group, Technische Universität München

Zayas et al. (1980)

SAFEINFRA:

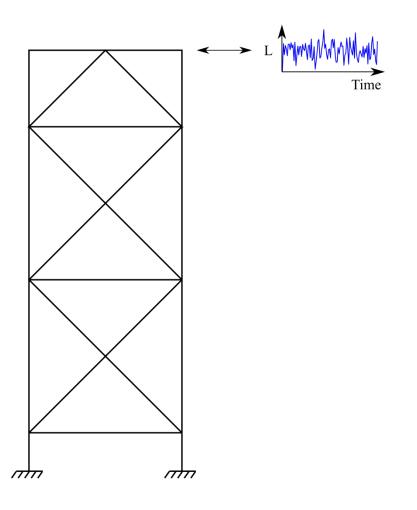

Risk and Safety of Infrastructures and Wind Turbines

My current research interests:

- How to analyze the reliability of deteriorating structural systems?
- How to update their reliability with inspection and monitoring information?
- How to identify optimal inspection, monitoring and maintenance strategies?

Jacket-type structure subjected to fatigue

■ Element *i* is damaged:


$$F_{i,t} = \{g_i(\mathbf{X}, t) \le 0\}$$

Conditional annual system failure probability:

$$\Pr(F_t|\mathbf{X}=\mathbf{x})$$

Prior annual system failure probability

$$Pr(F_t) = \int_{\mathbf{X}} Pr(F_t | \mathbf{X} = \mathbf{x}) f_{\mathbf{X}}(\mathbf{x}) d\mathbf{x}$$

Global damage detection system

Probability of damage detection:

$$\Pr(D_t|N_{F,t}=k)$$
, $k=0,...,n_E$

Number of damaged elements is a function of X:

$$N_{F,t} = q(\mathbf{X}, t) = \sum_{i=1}^{n_E} I(g_i(\mathbf{X}, t) \le 0)$$

• Likelihood function for detection event D_t :

$$L_D(\mathbf{x},t) = \sum_{k=0}^{n_E} I(q(\mathbf{x},t) = k) \cdot \Pr(D_t | N_{F,t} = k) \propto \Pr(D_t | \mathbf{X} = \mathbf{x})$$

• Likelihood function for combined monitoring outcome $Z_{0:t}$:

$$L(\mathbf{x},t) = \prod_{i=1}^{n_D(t)} L_D(\mathbf{x},t_i) \prod_{j=1}^{n_{\overline{D}}(t)} \left(1 - L_D(\mathbf{x},t_j)\right) \propto \Pr(Z_{0:t}|\mathbf{X} = \mathbf{x})$$

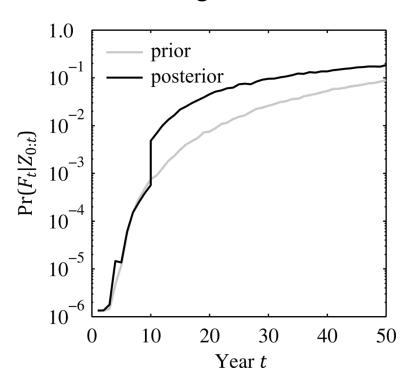
Updated annual system failure probability

Bayes' rule:

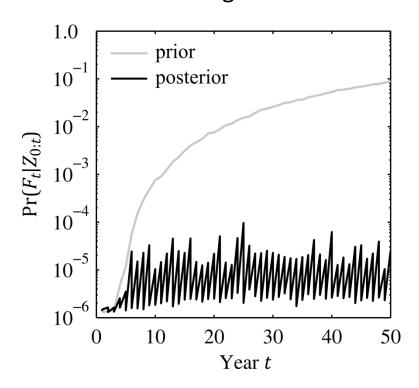
$$\Pr(F_t|Z_{0:t}) = \frac{\Pr(F_t \cap Z_{0:t})}{\Pr(Z_{0:t})}$$

• Joint probability of the events F_t and $Z_{0:t}$:

$$\Pr(F_t \cap Z_{0:t}) = \int_{\mathbf{x}} \Pr(F_t | \mathbf{X} = \mathbf{x}) \Pr(Z_{0:t} | \mathbf{X} = \mathbf{x}) f_{\mathbf{X}}(\mathbf{x}) d\mathbf{x}$$


Probability of monitoring outcomes:

$$Pr(Z_{0:t}) = \int_{\mathbf{X}} Pr(Z_{0:t}|\mathbf{X} = \mathbf{x}) f_{\mathbf{X}}(\mathbf{x}) d\mathbf{x}$$



Updated annual system failure probability

Monitoring in year 10 Damage detection

Monitoring once a year No damage detection

References

Schneider R., Thöns S. and Straub D. (in preparation):
Reliability analysis and updating of deteriorating structural systems with subset simulation.

 Zayas V. A., Mahin S. A. and Popov E. P. (1980): Cyclic inelastic behavior of steel offshore structures. UCB/EERC-80/27, University of California, Berkley, USA