

1st Workshop Opening Presentation

Sebastian Thöns

Initiation of COST Action TU1402

SHM constitutes scientifically, technologically and methodologically a well developed field. The potentials of structural health monitoring (SHM) are currently not completely utilised.

Developing SHM to maximize the Value of Information reveals high industrial potentials. Quantifying the Value of SHM is scientifically challenging.

With the initiation of the COST Action TU1402 we are providing a project vision with potentials beyond science and engineering. We are experiencing a large interest.

What is COST?

COST (European Cooperation in Science and Technology) is European framework supporting trans-national cooperation and dissemination among researchers, engineers and scholars across Europe.

COST aims to

- Enable breakthrough scientific developments leading to new concepts and products
- Build capacity by connecting high-quality scientific communities in Europe and worldwide
- Provide networking opportunities for Early Stage Researchers
- Increase the research impact on policy makers, regulatory bodies and national decision makers as well as on the private sector

Source: cost.eu

COST Action TU1402: Aims and Objectives

The main objective of the Action is to facilitate sustainable societal developments through improvements of resource efficiency, productivity, robustness, reliability and safety in the design and assets management for structures and infrastructure systems by optimised Structural Health Monitoring (SHM) systems.

Provision and dissemination of a framework with new consistent and efficient approaches to quantify, assess and optimize the benefit of SHM for structures and infrastructures

An improved economic efficiency in operation, maintenance and asset management of structures and infrastructures in the increasingly complex and ageing built environment in Europe

COST Action TU1402: Aims and Objectives

Main deliverables:

- 1. A chapter to the Probabilistic Model Code of the JCSS covering the theoretical and methodological aspects of the quantification of the value of SHM.
- 2. A library of tools and algorithms developed or tailored for support of the quantification of the values of SHM before its implementation.
- 3. A guideline on the quantification of the value and optimization of SHM with detailed examples aimed specifically at practising engineers.
- 4. A well-developed homepage including video streams of keynote presentations from workshops and conferences, written material produced within the Action as well as information about the Action and its participants in general.
- 5. Dedicated dissemination activities, including training courses for practicing engineers and researchers, regular workshops and special sessions at international conferences.

COST Action TU1402: Impact

The COST Action aims to impact science, industry and society.

Science impact:

- Development of the scientific field for quantifying the value of Structural Health Monitoring
- The network of this Action with experts in science, industry and stakeholders of structures and infrastructure systems will be utilized for developing project proposals under HORIZON 2020
- The scientific field will be made accessible and practicable by dissemination including guidelines

COST Action TU1402: Impact

European economy and society impact:

- Improved economic efficiency in the continued development, operation and maintenance and asset management of structures and infrastructure systems
- New business opportunities for European small and medium-sized (SME) and large industrial enterprises and the opportunity to create high quality jobs
- Increased competitiveness in the building, construction and structural engineering industry

COST Action TU1402: Scientific Program

The scientific focus of the Action is directed to the objective of quantifying the value of structural health monitoring before implementation. The COST Action comprises 5 Tasks:

1. Theoretical framework

2.SHM Strategies and Structural Performance

3. Methods and Tools

4.Case Studies Portfolio

5. Development of Guidelines

Department of Civil Engineering, Technical University of Denmark

COST Action TU1402: Scientific Program

		Year																
			1			2				3				4				
	Tasks	(Quarter				Quarter				Quarter				Quarter			
		I	II	ш	IV	I	II	Ш	IV	I	II	III	IV	I	II		IV	
Task	Task 1: Theoretical Framework																	
а	Clarification of the theory																	
b	Formulation of theory for applications																	
С	Communication of the theory																	
M1	Dissemination																	
Task	Task 2: SHM Strategies and Structural Performance																	
а	SHM Categorisation																	
b	SHM information modelling platform																	
M2	Dissemination																	
Task 3: Methods and Tools																		
а	Databases and modelling toolboxes for engineers and																	
	researchers																	
b	Advancement of algorithms for efficient computation																	
M3	Dissemination																	

COST Action TU1402: Scientific Program

			Year																	
				1				2			3				4					
	Tasks				Quarter				Quarter				Quarter				Quarter			
		Ι	II	III	N	Ι	II	III	IV	Ι		III	IV	Ι	II	III	IV			
Task	Fask 4: Case Studies Portfolio																			
а	Selection of case studies																			
b	Case study calculation and documentation																			
M4	4 Dissemination																			
Task	Task 5: Development of Guidelines																			
a Chapter of JCSS Probabilistic Model Code (PMC)																				
h	Guideline on the quantification of the value and optimization of																			
U	SHM																			
M5	Dissemination of guidelines																			

COST Action TU1402: Organisation

Department of Civil Engineering, Technical University of Denmark

COST TU1402: Quantifying the Value of Structural Health Monitoring 1st Workshop, 04.-05.05.2015, DTU, Denmark

COST Action TU1402: Organisation

12

DECISION THEORY

VALUE OF STRUCTURAL HEALTH

MONITORING

COST Action TU1402: Network

The partners comprise various research institutions, engineering consultants and industrial enterprises as well as operators of infrastructures.

- External Advisors:
 - Armen Der Kiureghian, University of California at Berkeley, USA
 - James L. Beck, California Institute of Technology, USA
 - Dagang Lu, Harbin Institute of Technology, China

COST Action TU1402: Network

- Full proposal: 50 participants from 20 European countries
- Now: 110 participants from 25 European countries

DECISION THEORY

VALUE OF STRUCTURAI HEALTH

MONITORI

Quantification of the value of structural health monitoring

The value of structural health monitoring is calculated as the difference between life cycle benefits B_1 and B_0 :

$$V = B_1 - B_0$$

Department of Civil Engineering, Technical University of Denmark

COST TU1402: Quantifying the Value of Structural Health Monitoring 1st Workshop, 04.-05.05.2015, DTU, Denmark

Quantification of the value of structural health monitoring

DECISION THEORY

Department of Civil Engineering, Technical University of Denmark

COST TU1402: Quantifying the Value of Structural Health Monitoring 1st Workshop, 04.-05.05.2015, DTU, Denmark

Quantification of the value of structural health monitoring Value of SHM: $V = B_1 - B_0$

 B_0 : Life cycle benefit without SHM B_1 : Life cycle benefit utilizing SHM

Life cycle benefits:
$$B_0 = \max_{\mathbf{a}, \mathbf{d}} E_{\mathbf{Z}_E} \left[E_{\mathbf{Z}_A} \left[\mathbf{d} \left(\mathbf{a}, \mathbf{Z}_E, \mathbf{Z}_A \right), \mathbf{Z}_E, \mathbf{Z}_A \right] \right]$$

 $B_1 = \max_{\mathbf{s}} E_{\overline{\mathbf{Z}}_E} \left[E_{\overline{\mathbf{Z}}_A} \left[\max_{\mathbf{a}, \mathbf{d}} E_{\mathbf{X} \mid \overline{\mathbf{Z}}_E, \overline{\mathbf{Z}}_A} \left[\mathbf{X}, \overline{\mathbf{Z}}_E, \overline{\mathbf{Z}}_A, \mathbf{s}, \overline{\mathbf{d}} \left(\overline{\mathbf{a}}, \mathbf{X}, \overline{\mathbf{Z}}_E, \overline{\mathbf{Z}}_A \right) \right] \right] \right]$

- **X**, Z_A , Z_E : Random variables for uncertain monitoring results, aleatory and epistemic uncertainties
- s, d, a: SHM strategies, decision rules and adaptive actions

The value of SHM (normalised) in dependency of the design and the operation reliability.

References: Faber, M. H. and S. Thöns (2013). On the Value of Structural Health Monitoring. ESREL 2013. Amsterdam, The Netherlands.

DECISION THEORY

VALUE OF STRUCTURAI HEALTH

MONITORI

Work Plan 1st Grant Period (2015)

Workshop on Quantifying the Value of SHM

- Location: Technical University of Denmark, Lyngby, Denmark
- Type: Management Committee Meeting, Steering Committee Meeting, Working Group Meeting, Workshops/Conferences, Dissemination Meeting

WG1 (Theoretical Framework) and WG2 (SHM Strategies and Structural Performance) Workshop

- Location: Istanbul
- Type: Management Committee Meeting, Steering Committee Meeting, Working Group Meeting, Workshops/Conferences

Work Plan 1st Grant Period (2015)

Further activities

- COST Action Webpage development
- Short term scientific missions (STSM)
 - Short-Term Scientific Missions (STSMs) allow scientists to learn from an institution or laboratory in another COST country.

Aims of the 1st Workshop

- 1. Development of a common understanding of the aims and the ideas of the COST Action TU1402 within our network
- 2. Dissemination of the aims and the ideas of the COST Action TU1402
- 3. Scientifically, the aims are to progress on
 - a. The clarification of the theory on quantifying the value of SHM (WG1)
 - b. The formulation of the theory for applications (WG1)
 - c. A categorisation of SHM strategies and structural performance models (WG2)

Agenda of the 1st Workshop

DAY 1: Monday, 04. May 2015

10:00-10:30	Registration and Welcome Reception
10:30-11:00	Workshop Opening Presentation
11:00-13:00	WG 1 Session: Theoretical Framework
	Chairs: M.H. Faber and D. Val
	Lunch Break
14:00-15:30	WG 3 Session: Methods and Tools
	Chairs: D. Straub and E. Chatzi
	Coffee Break and Poster Presentations
16:00-16:55	WG 4 Session: Case Studies Portfolio
	Chairs: Jochen Köhler and Helmut Wenzel
16:55-17:10	Helder Sousa: Let's innovate in the quantification of the Value of Structural Health Monitoring
17:10-18:00	Steering Committee Meeting
19:00	Workshop Dinner

Agenda of the 1st Workshop

DAY 2: Tuesday, 05. May 2015

08:30-11:00	WG 2 Session: SHM Strategies and Structural Performance							
	Chairs: Marios Chryssanthopoulos, Geert Lombeart and Michael Döhler							
	Coffee Breek							
	Collee break							
11:30-12:30	30-12:30 WG 5 and WG 6 Session: Standardisation and dissemination							
	Chairs: John Dalsgaard Sørensen (WG 5), Sebastian Thöns (WG 6)							
	Lunch Break							
13:30-14:00	Discussion and Conclusion							
14:00-15:00	Parallel WG Meetings: Discussion, Planning and Preparation of Agendas							
	Chairs: Individual WG Leaders							
	Coffee Break							
15:30-16:30	Management Committee Meeting							

Coming together is a beginning; keeping together is progress; working together is success.

Henry Ford (1863-1947)