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Abstract 

This factsheet summarises the activities of Working Group 2. Notwithstanding the wide and diverse 
nature of presentations and factsheets produced by WG2 members, it has been possible to create 
a framework through which SHM technologies can be categorised with regard to the performance 
state of interest in making asset management decisions. Moreover, the treatment on uncertainties, 
in terms of appreciation, modelling and propagation within decision-support tools, is investigated by 
collecting information from case studies in which WG2 participants have been involved. 

 

Introduction 

Structural Health Monitoring (SHM) has been researched extensively worldwide in the past 20-30 
years, using different sensors and strategies to monitor the response of structures and from that 
infer their performance against a variety of safety and functionality criteria. During the same period, 
the investments made by infrastructure owners / operators in the development of SHM have been 
significant. As a result, not only have many scientific publications appeared, but also many 
structures, both new and aged, have been equipped with SHM systems, including bridges, 
buildings, wind turbines, offshore structures, nuclear plants, dams, tunnels, etc. In principle, the 
observations / measurements from SHM systems can provide more detailed and more relevant 
information regarding the response of a structural system compared to traditional inspections and 
spatially limited non-destructive evaluations; in turn, this can translate to more effective 
performance indicators that can be used improving decisions associated with life-cycle asset 
management. As might be expected, the wide range of applications in different parts of the world 
investigating structural systems at various stages of their service lives and subjected to a variety of 
environmental and manmade actions, coupled with the rapid development of sensing and 
communication technologies, has posed significant challenges: how are we to categorise available 
SHM strategies bearing in mind the type of decisions that need to be made in asset management? 
How can we compare different SHM options available and select optimum strategies for different 
situations? Is a performance indicator that may be estimated using different SHM strategies on a 
specific structure subject to the same precision and accuracy level? These questions appeared 
relevant at the outset of this COST action and the work undertaken in Working Group 2 was aimed 
at providing some answers within the general framework of TU1402 and the sub-division of tasks 
to different working groups, as outlined in the Memorandum of Understanding [1]. 
 

1 Aims 

The general purpose of SHM is the collection of information that is used for the re-assessment of 
structural performance. The monitoring technology, the gathered information and the structural 
performance of interest vary considerably depending on the type of structures considered and the 
decision context that is being pursued. The activities in this Working Group were aimed at 
providing a categorisation of the available SHM technologies in regard to the quantity that is 
indicated (e.g. crack length (steel), chloride concentration (concrete)) and to the structural 
performance that can be related to the corresponding measurement (e.g. remaining fatigue life 
(steel component), corrosion state (concrete re-bar). The working approach involved collecting and 
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representing best practice technologies and applications in the context of life-cycle asset 
management. Due to the rather diverse and fast developing field of SHM in civil infrastructure, this 
was a challenging task, even though the COST framework is very well suited to arrive at a good 
representation of relevant best practice approaches. 
 
Quantifying the relationship(s) of the quantity/ies measured with SHM technologies and the 
structural performance of interest is of utmost importance for the effective application of SHM in 
practical situations. However, any estimation, and even more so prediction of structural 
performance, based on measured quantities is associated with uncertainties. The formulation of a 
link between the measured quantities and the estimated and/or predicted indicator value for the 
structural performance of interest with consistent treatment of uncertainties was a further aim of 
this working group. 
 

2 Achievements 

2.1 Categorisation framework 

 
Since the start of the action, members of WG2 have made over 20 presentations on the 
implementation of SHM strategies (and produced a similar number of factsheets). Many structural 
types were covered and different aspects of performance were considered. In general, a widening 
of research interest in SHM challenges from bridges and offshore structures to other types of 
structures, e.g. renewable energy infrastructure, can be identified. As highlighted in [2], in which a 
succinct appraisal of more than thirty review papers on SHM was attempted, the evolution of 
research objectives in investigating SHM for different types of structures often reveal a similar 
sequence: initially sensing technologies are trialled/evaluated, then data acquisition and basic 
processing from different types of sensors is addressed, and lastly condition identification for 
different damage types or different structural component/assembly/system is undertaken. The 
different structural condition identification methods can be broadly grouped as physics-based and 
data-driven, with some innovative integration methods using advanced data analytics algorithms 
also emerging in this field. VoI analysis is not explicitly formulated, confirming the fundamental 
premise at the outset of the action, though the potential of cost-benefit analysis is often mentioned 
as a key driver in gaining industry acceptance for various SHM schemes proposed by researchers. 
 
Moreover, the presentations revealed that structural response can be monitored at different levels 
in an expanding framework: structural component – structural system – infrastructure network. 
However, although there is consensus on the need to consider the widest possible framework in 
order to understand the potential of SHM (and be consistent with VoI analysis needs), the majority 
of presentations focused on the first level (component), with only few going beyond to a structural 
system level. 
 
A similar picture emerged for performance indicators, with component-based indicators being most 
common. It is believed that this is related to the way in which development and implementation of 
SHM in civil infrastructure is evolving: namely, as an additional tool in structural integrity 
management rather than as a more holistic approach to life-cycle management. As is well known, 
structural integrity management surmises that the engineers are able to identify ‘critical’ members 
or details (such as cracks in welds). Thus, in many cases, the SHM application domain appears 
quite constrained since SHM is viewed as an additional tool to traditional inspections. 
 
However, it is also evident that the community is increasingly aware of the potential of SHM even 
in cases where such critical locations are not readily identifiable. In this respect, approaches in 
which appropriate input or response parameters based on experience are measured, without a 
specific damage or defect case in mind, are also gaining ground. The justification for SHM is this 
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case appears to be an effort to improve prior and/or generic models so that the performance of a 
given structure is better estimated/predicted using site-specific information. 
 
Another salient point from the presentations lies in the range of temporal and spatial scales 
associated with different SHM strategies: from multi-year measurement aimed at revealing long-
term trends and changes, to single-day measurement aimed at establishing correlations between 
extreme loads and associated response; from assessment of performance using global strategies 
and measures to methods applied in order to quantify localised damage. 
 
In an effort to improve the impact of studies on the application of SHM strategies and to encourage 
cross-fertilisation, the framework was proposed by WG2 which has the following characteristics: 

• It promotes the use of common language/terminology. 
• It is proposes common ‘start’ and ‘end’ points so that greater transparency is achieved  – in 

the proposed framework these points are ‘performance’ and ‘decisions’. 
• The paths joining these points should be sufficiently generic so as to cover the wide range 

of efforts made by practitioners and researchers in introducing SHM into the asset 
management process. 

• It should be linkable to the conceptualisations proposed by WG1 and WG3. 
• It should be developable to a greater level of detail. 

 
 
 
 

  
Figure 1: Categorisation Framework 



 
 

Page 4 of 21 

The proposed framework is shown schematically in Figure 1, initially presented at the 2nd workshop 
in Istanbul and subsequently improved through discussions with the action members. Here an 
additional box has been added to the left to indicate the range of structural types that have been 
the subject of presentations by WG2 members. The boxes labelled “Methods and Tools” indicate 
the interfaces with other working groups in the action, particularly WG3 but also WG1 with respect 
to a decision framework in a life-cycle context. 
 
The proposed categorisation framework is intended as a classification system, facilitating the 
choice of keywords in describing a problem and its proposed solution, and exposing the critical 
interfaces that need to be integrated in order to move “from observations to decisions”. For 
example, Bismut et al. [3] took basis on the proposed framework to further develop concepts for 
organizing and categorizing a value of information (VoI) analysis. It should be noted that the link 
between the observations from SHM and performance indicators is not always evident, and in 
some cases adequate methods taking into account also the statistical nature of SHM data are not 
sufficiently developed so far. Such a link can be direct, when the performance indicator or 
associated summary statistics can be computed from the measurements, e.g. the computation of 
modal parameters from vibration signals or test statistics indicating their change. Such a link can 
also be indirect, when structural performance models use SHM data by means of Bayesian 
updating, e.g. updating failure probabilities. 
 
The framework is sufficiently generic to capture the wide range of contributions on different aspects 
of linking SHM with performance. However, it is envisaged that it can be refined with respect to 
attributes related to SHM technologies, performance of deteriorating structures and also with 
respect to the definition of system boundaries (from structural systems to infrastructure networks). 
An extensive overview of deterioration processes and performance indicators relevant to bridges 
that could be linked to the above framework is detailed in [4]. Also, a recent report from TU1406 [5] 
has provided comprehensive information regarding the definition of performance indicators for 
highway bridges throughout Europe. With respect to other structural types, aspects of performance 
modelling for wind turbines/parks are addressed in [6-8], and [9] provides a comprehensive risk-
based methodology for performance assessment of levees. Performance indicators for heritage 
structures are presented in [10], whereas assessment of timber structures is covered in [11]. 
 
By way of example, Table 1 shows how SHM strategies employed in (a) the Great Belt bridge [12] 
and (b) the Z24 bridge [13] can be classified according to the diagram in Figure 1. Similar 
classifications can be undertaken in other cases. 
 
System Performance SHM Life Cycle Assessment 

Category Indicator Observation Technology Action Decision 
type 

Great Belt Serviceability 
LS 

Strain Strain 
Temperature 
Traffic 

SG 
Thermocouples 
Cameras 

Inspection 
Repair 

Functionality 

Z24 Ultimate LS Modal 
parameters 

Ambient 
vibration 

Accelerometers Inspection 
Repair 

Safety 

 
Table 1: Example of SHM strategies classified using Figure 1. 

 
In the case of the Great Belt bridge, monitoring observations (taken over a number of years) 
consisted of two input (pavement temperature, heavy good vehicles) time-series and one output 
(strain) time-series. The effect of noise in measured strains and temperatures (from strain gauges 
and thermocouples respectively) was neglected and the model uncertainty in estimating the 
number of HGV vehicles from camera information (i.e. errors in correctly identifying HGV vehicles 
from camera information) was unaccounted. Moreover, the fatigue damage that is accumulated at 
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a particular welded detail from vehicles other than HGVs was assumed to be negligible. On the 
other hand, physical and model uncertainties associated with S-N fatigue curves and the adoption 
of Miner’s sum were included in the structural reliability models and uncertainties in the stress-
related fatigue indicator arising from the auto-regressive models for temperature and HGV traffic 
were also quantified and included in the analysis [12]. Referring to Figure 1, it can be seen that, in 
this study, uncertainties between SHM technology and observations (i.e. within the SHM ‘block’) 
were not dealt with, whereas uncertainties associated with the interface between observations and 
indicators were, at least partially, modelled. Uncertainties related to how performance (via an 
indicator function) is modelled for life-cycle assessment were also explicitly considered. 
 
Within the frame of the Brite-Euram project BE-3157 SIMCES, a 3-span pre-stressed concrete 
highway bridge (referred to as the Z24 bridge), built in 1963, was monitored for about one year, 
followed by a progressive damage test, before the planned demolition. The aim of the test was to 
verify the feasibility of vibration-based structural health monitoring for a number of realistic damage 
scenarios and to check the influence of environmental variations. Data obtained from 
accelerometers on the bridge were converted into observations of natural frequencies, mode 
shapes, and damping ratios, involving statistical estimation (finite time duration) as well as model 
uncertainties (underlying assumption of linear time-invariant model). The observations of modal 
parameters have been used in many studies to construct indicators for monitoring of structural 
performance, and ultimately, structural safety. This requires, however, a separation of 
environmental from structural effects through, for example, data-driven model relating the 
environmental parameters to the observations. The estimation of such data-driven model will 
necessarily also involve estimation and model uncertainties. 
 
The above exemplifies the idealisations that are made in developing SHM-based asset 
management strategies for specific problems. The information in the observations obtained 
through SHM is subject to uncertainties of different types or, more precisely, a formal quantification 
of the information content requires a consistent treatment of uncertainties. The importance of 
measurement inaccuracies and uncertainties has since long been recognized by craftsmen and 
engineers. An old English adage is “measure thrice, cut once”, whereas a Russian proverb, 
originally referring to carpentry and needlework, states “measure seven times, cut once” [16]. 
Notwithstanding the urge to debate whether 3, 7 or 37 measurements should be specified in any 
particular instance, the simple message is that measurements are subject to errors and 
uncertainties and it is therefore wise to develop an appreciation of their characteristics before 
taking the next, often irreversible, step. The proliferation of structural health monitoring (SHM) 
technologies and their implementation in various structural systems, principally during the past two 
decades, has brought a number of new challenges in relation to the measurement of quantities 
associated with system performance, be it input (such as loads or environmental parameters), 
system (such as model biases) or output related (such as deflections or vibrations). As part of the 
work undertaken in WG2, an effort was made to classify the sources of uncertainty in SHM-based 
life-cycle management and to understand the treatment of uncertainty in defining and estimating 
performance indicators. This work is summarised with reference to the above categorisation 
framework suggested by WG2. First, a brief recapitulation is made of the classification of 
uncertainty in the overarching framework of structural reliability. Next, statistical and model 
uncertainties are discussed for SHM in the framework of life-cycle asset management, followed by 
an assessment of their treatment in practice, using the questionnaire that was developed. 
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2.2 Classification and Treatment of Uncertainty in SHM-based life-cycle asset 
management 

2.2.1 Classification of uncertainty in structural reliability assessment  

Early work on quantifying the safety of structures through the birth and development of structural 
reliability theory [17, 18] focused on variability in strength of materials built to the same design; the 
distribution of strength in iron chains, castings and timber are examples where research in the first 
half of the 20th century led to the application of statistical analysis and the description of physical 
uncertainty in mechanical properties through probability distributions [19]. It is interesting to note 
that time-dependent effects attracted attention from those early days, such as the effect of load 
duration on the ultimate strength of timber or the variation of strength with time in the case of 
concrete cubes. At the same time, efforts were made to understand and categorise load variability 
by examining sources of uncertainty arising in the application of both quasi-static and dynamic 
loads on structures. The prediction of extreme loads in either category exercised the mind of those 
pioneering researchers, possibly spearheaded by the seminal monograph on statistics of extremes 
by Gumbel [20]. However, it is not until the late 1970’s and early 1980’s that a framework for 
categorising different types of uncertainty for the purposes of undertaking structural reliability 
analysis is beginning to be established. Ang and Tang [21] and Thoft-Christensen and Baker [22] 
introduce the distinction between uncertainty associated with randomness and uncertainty 
associated with imperfect modelling and estimation; the latter state explicitly that three types of 
uncertainty should be considered in any structural reliability problem: (a) physical uncertainty, (b) 
statistical uncertainty and (c) model uncertainty. 
 
Classifying uncertainty can be helpful in modelling and accounting for it in specific problems and it 
is important to note that it can be classified in different ways. In quantitative risk analysis it is 
common to distinguish between uncertainty that captures the random variability of a repeatable 
experiment (aleatory), and the uncertainty due to lack of complete knowledge (epistemic). Inherent 
or natural variability associated with natural phenomena (e.g. in terms of seismic motion: future 
earthquake locations, future earthquake source properties, ground motion scatter about median 
value) or man-made processes (e.g. in terms of building construction: mechanical properties of 
materials) is classified as aleatory, and is typically modelled by stochastic (probabilistic) models. 
On the other hand, modelling assumptions and idealisations (e.g. fault geometry and capability, 
selection of ground motion models, simplified representation of real structure: 2D vs. 3D analysis) 
and parameter estimation through sampling are treated as ‘epistemic’ uncertainties. In principle, 
aleatory uncertainty is non-reducible, whereas epistemic uncertainty can be reduced by investing 
in additional data or information. In practical situations this statement should be viewed as a useful 
rule rather than an axiom. Moreover, the uncertainty split can change during the life of a structure. 
For example, the level of epistemic uncertainty may be reduced as knowledge and understanding 
of a particular situation increases with time, through targeted investigations or service-proven 
record (e.g. if a structure experiences an earthquake of ‘known’ characteristics). Der Kiureghian 
and Ditlevsen [23] appear to have laid to rest the discussion regarding the relevance of 
distinguishing between aleatory and epistemic uncertainties. They argue that the distinction is 
useful within a model, since it then becomes clear(er) as to which uncertainties have the potential 
to be reduced, especially in near-term, and in developing sound and transparent risk and reliability 
models. Issue of ergodicity and dependence between random events may not be properly 
accounted for if the nature of uncertainties is not correctly modelled. In codified reliability-based 
design, uncertainty and knowledge representation is described succinctly within the recently 
updated ISO 2394, where it is stated that the quantitative representation of uncertainties should be 
founded on probability theory and that the Bayesian interpretation of probability provides a basis 
for the consistent representation of uncertainties independent of their sources and facilitates the 
joint consideration of purely subjectively assessed uncertainties, analytically assessed 
uncertainties and evidence as obtained through observations [24].  
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2.2.2 Uncertainties related with the integration of SHM in life-cycle asset management  

2.2.2.1 Statistical uncertainties in SHM 

Any observations that are measured with SHM technology are subject to some measurement 
noise. Furthermore, observations are often the outputs of dynamical systems whose properties are 
never completely known in practice. When using the observations for the computation of indicators 
that are relevant for a particular monitoring problem, then the indicators are in almost all cases 
afflicted with statistical uncertainty since the information from the measurements is in general 
neither perfect nor complete:  

• The measured observations are only noisy versions of the desired quantities to be 
measured due to measurement noise. 

• Observations are obtained only in a finite time window, while the exact computation of 
some indicators would require infinite time series of data. 

• In some cases, the exact computation of an indicator would be possible if some additional 
information was available which however is not measured or not measureable in practice, 
and only assumptions on its statistical properties are made.  

Thus, nearly all indicators that are computed from data are random variables with some probability 
distribution and hence some statistical uncertainty. 
 
Obviously, the knowledge of the statistical uncertainty of an indicator is crucial for monitoring in 
order to judge if a change of the indicator is just due to its natural statistical variability or if the 
change is (statistically) significant and hence indicates an abnormal behaviour of the monitored 
structure. So first, the uncertainty of an indicator needs to be quantified, and subsequently treated 
for a decision on a change of the indicator or for any further analysis of such a change. 
 
Uncertainty quantification 
 
In order to quantify the statistical uncertainty of an indicator, the parameters of its probability 
distribution are required. In the vast majority of cases, indicators that are estimates of some 
physical quantities (e.g. modal parameters) are assumed to be Gaussian distributed, hence only 
their covariance is required to quantify their uncertainty. The (approximate) Gaussian distribution of 
an indicator can often be justified through its asymptotic Gaussian distribution, i.e. its convergence 
to a Gaussian distributed variable when the number of measurements tends to infinity. Many 
indicators are functions of correlations of the measurement data. These correlations satisfy the 
central limit theorem (under standard assumptions like ergodicity) and are therefore Gaussian 
distributed. Then, indicators that are functions of these correlations also satisfy a central limit 
theorem under certain conditions (notably that their sensitivity with respect to these correlations is 
different from zero) and hence are asymptotically Gaussian distributed.  
 
The quantification of the uncertainty can then simply be made through the computation of a sample 

covariance of the indicator, when several independent samples 
kt  of an indicator in the same 

structural state are available, as 
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In other cases it is more difficult to obtain such a sample covariance directly, e.g. when the 
computation of the indicator is less straightforward from the measurement data, or when only one 
dataset is available. In this case, a sample covariance may be computed on the measurement data 
directly, and then propagated to the indicator with the statistical delta method, which requires the 
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computation of the analytical sensitivities of the indicator with respect to data correlations. An 
example on the variance estimation of modal parameters is given in [25]. 
 
Other indicators are not directly estimates of physical parameters for monitoring, but some features 
computed from measurement data whose change indicates damage. For example, such indicators 
originate from statistical pattern recognition or other statistical time series analysis techniques [26]. 
These indicators should take into account the statistical properties of the measurement data 
directly in their computation, from which their probability distribution follows. An example on 
indicators for change detection and diagnosis in dynamic systems is given in [27]. 
 
Indicators that are not only computed from measurement data but that also involve sophisticated 
models (e.g., finite element models, reliability models, …) are subject to both statistical uncertainty 
related to the data and to model uncertainty. Furthermore, the model itself may have some data-
based uncertainty when measurements are used to obtain it or to calibrate it. In this case, all 
sources of uncertainty should be considered. An example of uncertainty propagation from data to 
parameters of a finite element model in model updating is given in [28]. This case is discussed in 
more detail in the next subsection. 
  
Uncertainty treatment 
 
A simple evaluation of an indicator can be based on its estimate and its confidence interval 
obtained from the properties of its probability distribution. In the case of (asymptotically) Gaussian 
distributed estimates, confidence bounds are easily obtained for a desired confidence level from 
the covariance estimate. For example, let t be unbiased Gaussian distributed indicator with 
standard deviation σ. Then, the probability that the true value that is estimated by t lies in the 
interval [t – σ, t + σ] is around 68%, 95% that it is in [t – 2σ, t + 2σ] and 99.7% for [t – 3σ, t + 3σ]. 
 
For the monitoring of changes in an indicator, statistical distance measures are useful tools to 
decide if a change is significant or not. The statistical uncertainty of the indicator is naturally 
considered in the computation of such a distance. For a decision, the distance is usually compared 
to a threshold based on an acceptable type I error. There are several ways to define such 
distances. For example, a popular and simple way is the computation of the Mahalanobis distance 
[29], where an indicator t with covariance   is compared to a reference value  : 

 2 1( ) ( )Ttd t −= −  −   

When the indicator is asymptotically Gaussian distributed, then the Mahalanobis distance is 
asymptotically χ2 distributed. Another popular way to analyse changes is the use of control charts 
[30]. A more general setting for the analysis of indicators is hypothesis testing with (generalized) 
likelihood ratio tests, where the likelihood is evaluated that the current estimate of an indicator is 
drawn from the probability distribution corresponding to the null hypothesis or to the alternative 
hypothesis. The definition of the hypotheses is hereby quite flexible and can be based on relevant 
system parameters. They usually correspond to certain states of the monitored system [26, 27].  
 

2.2.2.2 Model calibration uncertainties in SHM 

In model calibration, data obtained from a sensor network is used in either direct or indirect, 
processed form to calibrate or update a model, adjusting parameters representing unknown 
system properties. In a context of SHM, the data is often obtained from sensors which pick up the 
dynamic behaviour of the structure in operational conditions, e.g. by accelerometers or optical 
fibres, and the data is subsequently processed using system identification algorithms to yield 
modal parameters (natural frequencies, mode shapes, modal damping ratios) for model calibration. 
The model under consideration, on the other hand, is usually a finite element (FE) model of the 
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structure, i.e. a physical model or model based on first principles. In civil engineering, the process 
of model calibration is most commonly referred to as FE model updating. Due to the indirect nature 
of the relation between the data and the model parameters, model calibration is usually formulated 
as a nonlinear least-squares problem and solved using gradient-based optimization algorithms. In 
SHM, model calibration can be applied 1) as a technique for damage detection, when the 
parameters characterize damage in the structure, or 2) as a way to improve the predictive qualities 
of the model. 
 
Model calibration is an inverse problem, as the conventional forward relation between the 
parameters and the model output is reversed. In many cases, this inverse problem is ill-posed, 
meaning that the existence, uniqueness, and stability of the solution to the inverse problem are not 
guaranteed. Small deviations in the data or modelling errors may have a large impact on the 
estimated parameter values and, hence, predictions made using the model. It is therefore 
imperative to consider all relevant uncertainties in the model calibration process.  
 
Uncertainty quantification through Bayesian inference 
 
A first question that arises is what types of uncertainties are involved. When SHM is considered 
within the frame of engineering decision analysis [31], one can revert to the differentiation between 
inherent natural variability, model uncertainties and statistical uncertainties, which is conventionally 
adopted in this field. Uncertainties of the first type are often categorized as aleatory or irreducible 
uncertainty whereas the latter two types are considered as epistemic or reducible uncertainty. The 
epistemic uncertainties can be reduced as information becomes available, often by updating the 
corresponding probabilities in a Bayesian setting. The implementation of Bayesian inference for 
parameter estimation in structural dynamics and structural health monitoring was first considered 
by Beck at al. [32].  
 
In the Bayesian framework, Bayes’ rule is used to update a prior distribution of the model 
parameters into a posterior distribution through multiplication by a likelihood function that 
characterizes additional information that became available. It is important to note that the solution 
to the inverse problem is the full posterior distribution rather than a single deterministic solution. 
For this reason, Tarantola argues in his well-known book on inverse problems [33] that data should 
only be used to falsify models rather than validating them.  
 
One of the most widely cited publications on parameter inference in the Bayesian framework is the 
work on the Bayesian calibration of computer models by Kennedy and O’Hagan [34]. They 
consider the following types of uncertainties: (1) parameter uncertainty, (2) model inadequacy, (3) 
residual variability, (4) parametric variability, (5) observation error, and (6) code uncertainty. Key in 
the framework presented by Kennedy and O’Hagan is the relation between the true process 
ζ()and the model output η(𝑥𝑖, 𝜃), with 𝑥𝑖 known variable inputs and 𝜃 the calibration parameters 

[34]: 
𝑧𝑖 = 𝜁(𝑥𝑖) + 𝑒𝑖 = 𝜌𝜂(𝑥𝑖, 𝜃) + 𝛿(𝑥𝑖) + 𝑒𝑖 

     
where ei is the observation error, which includes the aforementioned, inseparable residual 
variability, ρ is an unknown regression parameter and δ() is a model inadequacy function that is 

independent on the code output η(). By adopting probabilistic models for the error terms, this 

prediction error equation leads to the formulation of the likelihood function. Distinguishing between 
parameter uncertainty, model inadequacy, and observation errors may be difficult and prone to 
issues of identifiability, however [35]. In many publications presenting Bayesian calibration in a 
context of structural engineering, the model inadequacy is (implicitly) lumped into the observation 
error, implying that systematic errors or bias are disregarded. Apart from a few exceptions [36], a 
simple i.i.d. model is used for the complete observation error. Inadequate treatment of the model 
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inadequacy and observation errors may jeopardize the interpretation of the estimated parameter 
values as “true values”, however, since any discrepancy not explicitly considered in the prediction 
error equation will lead to bias. Kennedy and O’Hagan warrant against this physical interpretation 
of the parameter values and argue that the model should only be used for predictions. This is of 
course violated in case FE model calibration is done with the purpose of damage detection [37]. It 
is noted here that the filtering techniques which have recently been proposed for on-line estimation 
of states, inputs, and parameters rely on a similar prediction error equation and can be cast into a 
Bayesian framework.  
 
Uncertainty quantification through non-probabilistic methods 
 
In the last few decades, non-probabilistic models emerged for uncertainty modelling, in response to 
the inadequacy ascribed to the description of epistemic uncertainties by probabilistic models [38]. 
Probabilistic models are considered not well suited to capture uncertainty appearing in the form of 
poor data or linguistic expressions, which may be more straightforwardly described by ranges of 
possible values or intervals. This type of uncertainty is also referred to as impreciseness. 
Examples of non-probabilistic models include interval-based approaches, convex modelling, and 
fuzzy set theory. An example of the application of fuzzy set theory for damage detection through 
FE model updating can be found in [37]. One of the difficulties found herein is the inability of the 
method to consider dependency between fuzzy variables or quantifying dependency among 
multiple outputs, although some suggestions have already been made to remediate these 
shortcomings. A workshop on the treatment of epistemic uncertainties held in 2002 and sponsored 
by Sandia National Laboratories showed that that there was little or no consensus on the preferred 
approach for the modelling of epistemic uncertainties [39]. Participants with a background in 
probabilistic mechanics advocated the use of a purely probabilistic approach for treatment of all 
types of uncertainties, while most of the other participants felt the formal treatment of epistemic 
uncertainties introduced new considerations. Although the workshop was held over 15 years ago, it 
is fair to say that the debate is still ongoing and agreement on the subject has not been (and is 
probably not expected to be) reached.    
 

2.2.3 Survey of current practice amongst COST Action TU1402 participants 

The categorisation framework in Figure 1 illustrates the wide range of different asset types and 
performance issues, as well as the plethora of available SHM options and analysis methods. 
Introducing observations from SHM technologies in life-cycle asset management involves a 
consistent treatment of the relevant uncertainties as discussed in the previous section. A 
questionnaire was launched among the participants of the COST Action TU1402 to assess current 
practice in the treatment of uncertainties in the links between measured quantities and structural 
performance. In particular, it was intended to assess where the participants’ emphasis is placed 
with regard to consideration of uncertainties and their treatment in, e.g., system variables, 
performance indicators, SHM data and, finally, range of decisions considered. The following 
questions were asked: 
 

(a) Context of the work 
(b) What sources of uncertainties are present in this work? 
(c) How are these uncertainties best described? 
(d) Are these uncertainties currently taken into account in SHM data processing and/or the 

performance analysis in your work? 
(e) What methods are used to quantify or to propagate the uncertainties? 

 
Eighteen contributions were received, covering many different aspects in the proposed 
categorisation framework. The participants’ contributions within the respective context of their work 
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are summarised in the Appendix. A recap and synthesis of the results of the questionnaire is given 
in the following. 
 
(a) Context of the work 
Five main areas regarding the context of the work could be identified: 

1. Analysis of measurement uncertainties of the used SHM technology 
2. Uncertainties in data-driven performance indicators (mainly linked to damage detection) 
3. Model-based performance indicators with uncertainties due to unknown material 

characteristics 
4. Fatigue/reliability analysis with performance model uncertainties and measurement 

uncertainties 
5. Decision making 

 
(b) What sources of uncertainties are present in this work? 
The following principal sources of uncertainties have been mentioned: 

• Modelling uncertainties: underlying the choice and computation of an indicator is often a 
model implying an idealized representation of the system’s behaviour. Examples: unknown 
material properties; imperfect models for changing environmental and operational 
conditions; imperfect models for soil-structure interaction, etc.  

• Measurement uncertainties: observations extracted from data by SHM technology are 
characterized by measuring (data processing/human inspection) uncertainties. 

• Estimation/statistical uncertainties: an indicator computed from SHM observations is a 
random variable (measurement uncertainties, finite time window) with properties depending 
on the applied method.  

 
(c) How are these uncertainties best described? 
The majority of contributions used probabilistic models and statistical inference (random variables, 
random processes) for the characterisation of the present uncertainties. Few contributions 
mentioned fuzzy or interval based methods, and scenario based models. Overall, there is a 
tendency towards probabilistic methods, partly because the recognition/quantification of 
measurement and estimation uncertainties in statistical terms seems to be quite widespread. There 
is little evidence of the distinction between epistemic and aleatory uncertainties being made, not 
even from an identification point of view (i.e. in order to understand how uncertainties may be 
measured, updated or controlled). 
 
(d) Are these uncertainties currently taken into account in SHM data processing and/or the 
performance analysis in your work? 
The presence of different kinds of uncertainties is widely acknowledged, and in many cases some 
uncertainties are taken into account. However, there seems to be an overall lack of consistency on 
how uncertainties are classified and the methods for their quantification and treatment are 
adequate on a case specific basis. In particular, the uncertainty of indicators is often (at least 
partly) quantified, but in many cases not explicitly taken into account for monitoring. Furthermore, 
the measurement uncertainty of SHM data is widely acknowledged but few contributions have 
been made on the resulting statistical uncertainty of the indicators. As a result, the concept of 
confidence levels does not play the role that might have been expected, given the varied sources 
of uncertainty present in these case studies.  
 
(e) What methods are used to quantify or to propagate the uncertainties? 
The following general method classes have been mentioned: 

• Quantification through statistical methods and Bayesian inference 

• Propagation through structural reliability methods (probabilistic models) 
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• Practising engineers are used to cast uncertainties in bounds, though these are not strictly 
based on probabilistic principles (i.e. they seem ‘logical’ rather than being statistically 
quantified). 

 

3 Dissemination 

1. Working Group 2 has produced a large number of fact sheets that are collected in the 
proceedings of the different workshops of the COST Action TU1402: 6 fact sheets in the 
Proceedings of the 1st Workshop (publicly available), 13 fact sheets in the Proceedings of 
the 3rd and 4th Workshop (password protected). In addition, the leaders of WG have 
contributed to the organization of the following sessions at international conferences: 

a. 8th European Workshop On Structural Health Monitoring (EWSHM 2016), 5-8 July 
2016, Spain, Bilbao, “Health monitoring and structural performance assessment”, 
organized by Michael Döhler (INRIA), Geert Lombaert (KU Leuven), Eleni Chatzi 
(ETH), Sebastian Thöns (DTU): 15 presentations. 

b. Fifth International Symposium on Life-Cycle Civil Engineering, IALCCE2018, 
October 29-31, 2018, Belgium, Ghent, “Special Session SS-10: Value of Structural 
Health Monitoring information for the Life-Cycle management of civil structures”, 
organized by Sebastian Thöns (DTU), Geert Lombaert (KU Leuven), Maria Pina 
Limongelli, (Politecnico di Milano): 9 presentations. 

2. The categorisation framework shown in Figure 1 and included in the COST Action TU1402 
brochure (http://www.cost-tu1402.eu/resources-downloads/action-documents) lends itself 
as an introductory web page that presents an overview of the activities within the working 
group. The different fact sheets could be linked to (parts of) the diagram for an appreciation 
of work contributed by the COST action participants, as has been demonstrated for a 
couple of fact sheets related to bridges in the above section. This would require making 
public those fact sheets that are currently included in password protected proceedings. 
 

4 Lessons learnt 

The vast amount of research devoted to SHM has led to a wide variety of possible monitoring 
technologies (sensors, algorithms, etc.) with different levels of technology readiness. 
Notwithstanding the pressing need for condition assessment of a large number of structures in 
practice, the practical implementation of these monitoring technologies is lagging behind. Within 
Working Group 2, the following challenges were identified that need to be dealt with in order to 
facilitate a wider deployment of SHM: 

- Undertaking successful field testing, reaching the appropriate level of technology readiness 
level for different SHM options. 

- Establishing robust links between monitoring data and performance indicators with 
appropriate treatment of uncertainties. 

- Defining suitable thresholds / targets for performance indicators. 
- Assessing the benefits of SHM beyond a component level, in the first instance to a 

structural system level. 
- Quantifying the confidence levels with which performance indicators can be estimated and 

predicted, given the propagation of uncertainties from various sources. 
 

5 Conclusions 

Notwithstanding the wide and diverse nature of the collection of fact sheets produced by Working 
Group 2, they only represent a few samples from ongoing research and implementation of 
Structural Health Monitoring. An exhaustive categorization of monitoring technologies, including 
their relation to performance indicators and targets, is therefore prohibitive. Instead, Working 

http://www.cost-tu1402.eu/resources-downloads/action-documents
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Group 2 has focussed on providing a categorization framework which can have a wide applicability 
and provide a common reference point to the community.  
In order to quantify the value of information brought by the observations provided by monitoring 
technologies, a formal, holistic and consistent treatment of the corresponding uncertainties is 
needed. This involves the identification of the uncertainties directly related to these observations, 
as well as their propagation, be it in forward relations between observations or indicators, or in 
inverse relations e.g. occurring when observations are used for model calibration. A questionnaire 
among the participants of the COST TU1402 Action shows that the importance of the various types 
of uncertainties is widely recognized. Although probabilistic models and statistical inference are 
mostly used to quantify these uncertainties, it is felt that interval or fuzzy based methods or 
scenario based methods can also be appropriate in some cases. The move towards more formal 
decision theory tools (such as VoI), as opposed to the current less formal judgement based 
decision framework, will have a positive impact on uncertainty quantification and treatment. This is 
to be welcomed, provided it does not lead to an unnecessarily higher degree of complexity and 
loss of transparency. In this respect, there is scope for well documented case studies to be 
developed and presented so that practitioners can see the benefits that can be accrued from the 
adoption of new tools and associated criteria. 
 

6 Outreach 

A feasible option for outreach activities is via mobilisation of industrial partners who have both the 
incentive and the resource to develop such material from real projects with which they are 
involved. The factsheets provide information on current activities of several industrial partners who 
engaged with WG2 and who might be approached for this purpose. 
 

References 

1. Thöns S. (2014). Full proposal for a new COST Action: Quantifying the Value of Structural 
Health Monitoring. Proposal reference oc-2013-2-16995. 

2. Wang Y. and M. Chryssanthopoulos (2018). Structural condition identification for civil 
infrastructure: an appraisal based on existing literature reviews. 9th European Workshop on 
Structural Health Monitoring, Manchester. 

3. Bismut E. et al. (2017). Framework and Categorization for Value of Information Analysis. 
TU1402 WG3 Factsheet. 

4. COST 345 Technical Report (2002). Procedures Required for Assessing Highway Structures. 
Joint report of Working Groups 2 and 3: Methods used in European States to inspect and 
assess the condition of highway structures. 

5. COST TU1406 Technical Report (2016). Performance Indicators for Roadway Bridges. 
Working Group 1. 

6. Thöns S., M. H. Faber and W. Rücker (2012). Ultimate Limit State Model Basis for Assessment 
of Offshore Wind Energy Converters. Journal of Offshore Mechanics and Arctic Engineering 
(JOMAE) 134(3): 031904. 

7. Thöns S., M. H. Faber and W. Rücker (2012). Fatigue and Serviceability Limit State Model 
Basis for Assessment of Offshore Wind Energy Converters. Journal of Offshore Mechanics and 
Arctic Engineering (JOMAE) 134(3): 031905. 

8. Asgarpour M. and J.D. Sorensen (2018). Bayesian based Prognostic Model for Predictive 
Maintenance of Offshore Wind Farms. International Journal of Prognostics and Health 
Management, ISSN 2153-2648. 

9. CIRIA (2013). The International Levee Handbook, Publication C731, London. 
10. Masciotta M. et al. (2016). Development of Key Performance Indicators for the Structural 

Assessment of Heritage Buildings. 8th European Workshop on Structural Health Monitoring, 
Bilbao; and in e-journal of NDT, ISSN 1435-4934. 



 
 

Page 14 of 21 

11. Loebjinski et al. (2018). Development of an optimization-based and practice orientated 
assessment scheme for the evaluation of existing timber structures. IALCCE 2018, Leuven. 

12. Farreras Alcover I. et al. (2015). Outlier detection based on Structural Health Monitoring of 
welded bridge joints. TU1402 WG2 Factsheet. 

13. Reynders E. et al. (2015). Monitoring the structural health of the Z24 Bridge. TU1402 WG2 
Factsheet. 

14. Melchers R.E. and A.T. Beck (2017). Structural reliability analysis and prediction. 3rd edition, 
Wiley. 

15. Bell S., “The beginner’s guide to uncertainty of measurement”, Good Practice Guide No. 11, 
NPL publication, issue 2, 2001. 

16. The Oxford Dictionary of Proverbs (2009). 5th edition, edited by John Simpson and Jennifer 
Speake, Oxford University Press. 

17. Puglsey A.G. (1951). Concepts of Safety in Structural Engineering, Proc. Inst. Civ. Engrs, 
London. 

18. Freudenthal A.M. (1954). Safety and the Probability of Structural Failure, Proc. ACSE, Vol. 80. 
19. Pugsley A.G. (1966). The Safety of Structures, Edward Arnold Ltd. 
20. Gumbel E.G. (1958). Statistics of Extremes, Columbia University Press, New York. 
21. Ang A.H.S. and Tang W.H. (1975). Probability Concepts in Engineering Planning and Design, 

Vol. 1 – Basic Principles, John Wiley and Sons. 
22. Thoft-Christensen P. and Baker M.J. (1982). Structural Reliability Theory and its Applications, 

Springer-Verlag. 
23. Der Kiureghian A. and Ditlevsen O. (2009). Aleatory or Epistemic? Does it matter?, Strucural 

Safety, Vol. 31, pp105-112. 
24. ISO 2394 (2015). General principles on reliability for structures, 4th edition. 
25. Mellinger P., Döhler M. and L. Mevel (2016). Variance estimation of modal parameters from 

output-only and input/output subspace-based system identification. Journal of Sound and 
Vibration, 379:1-27. 

26. Fassois S. D. and J. S. Sakellariou (2009). Statistical Time Series Methods for SHM. In 
Encyclopedia of Structural Health Monitoring (eds C. Boller, F. Chang and Y. Fujino). 

27. Döhler M., Mevel L. and Q. Zhang (2016). Fault detection, isolation and quantification from 
Gaussian residuals with application to structural damage diagnosis. Annual Reviews in Control, 
42:244-256. 

28. Gautier G., Mevel L., Mencik J.-M., Serra R. and M. Döhler (2017). Variance analysis for model 
updating with a finite element based subspace fitting approach. Mechanical Systems and 
Signal Processing, 91:142-156. 

29. Worden K., Sohn H. and C. R. Farrar (2002). Novelty detection in a changing environment: 
regression and interpolation approaches. Journal of Sound and Vibration, 258(4), 741-761. 

30. Bersimis S., Psarakis S, and J. Panaretos (2006). Multivariate Statistical Process Control 
Charts: An Overview. Quality & Reliability Engineering International, 23(5): 517-543. 

31. Faber, M.H. (2005). On the treatment of uncertainties and probabilities in engineering decision 
analysis. J Offshore Mech Arct Eng, 127, pp. 243-248 

32. Beck, J. and L. Katafygiotis (1998). Updating models and their uncertainties. I: Bayesian 
statistical framework. ASCE J. Eng. Mech. 124(4), 455–461. 

33. Tarantola, A. (2005). Inverse problem theory and methods for model parameter estimation. 
SIAM, Philadelphia, USA. 

34. Kennedy M.C. and A. O. O'Hagan (2001). Bayesian calibration of computer models. J. R. Stat. 
Soc. Ser. B (Methodol.), 63(3), 425–464. 

35. Arendt P.D., Apley D.W. and W. Chen (2012). Quantification of model uncertainty: calibration, 
model discrepancy, and identifiability. J Mech Des, 134, p. 100908 

36. Simoen E., Papadimitriou C. and G. Lombaert (2013). On prediction error correlation in 
Bayesian model updating. Journal of Sound and Vibration, 332(18):4136-4152. 



 
 

Page 15 of 21 

37. Simoen E., De Roeck G. and G. Lombaert (2015). Dealing with uncertainty in model updating 
for damage assessment: a review. Mechanical Systems and Signal Processing, 56-57:123-
149. 

38. Beer, M., Ferson, S., & Kreinovich, V. (2013). Imprecise probabilities in engineering analyses. 
Mechanical systems and signal processing, 37(1-2), 4-29. 

39. Ferson S., Joslyn C.A., Oberkampf W.L. and K. Sentz (2004). Summary from the epistemic 
uncertainty workshop: consensus amid diversity. Reliab. Eng. Syst. Saf., 85, pp. 355-369 

 
  



 
 
 
 

Page 16 of 21 

 
 

Appendix: Summary of participants’ contributions 

 
Part I: Fact sheets from the participants of WG2 
 
1st workshop 
 

Contributors Title 

M.P. Limongelli, M. Domaneschi, L. Martinelli, M. 

Dilena, A. Morassi, A. Zambrano and A. Gecchelin 
The interpolation method for the detection of localized stiffness losses 

F. Hille Subspace-based detection of fatigue damage on a steel frame laboratory structure for offshore applications 

M. Maślak, M. Pazdanowski, J. Siudut and K. Tarsa  Probability-based durability prediction for corroded shell of steel cylindrical tank for liquid fuel storage 

J. Markova, M. Holicky and M. Sykora Monitoring of bridges for calibration of load models 

A. Mandić Ivanković, Jure Radić and Mladen Srbić Finding a link between measured indicators and structural performance of concrete arch bridges 

A. Zornoza, T. Grandal, R. de la Mano, L. Blanco, F. 

Rodriguez, A. Asensio, P. Rey and E. Rodriguez 
SHM with fiber optic sensors at AIMEN technology center 

 
3rd and 4th workshop 
 

Contributors Title 

C. Andrade, J. Fullea, J. Sanchez, N. Rebolledo, F. 

Pedrosa, L. Saucedo 

On-site corrosion rate 

C. Andrade, J. Fullea, F. Tavares, J. Sanchez, N. 

Rebolledo, F. Pedrosa, L. Saucedo 

Permanent corrosion sensors 
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H.Sousa, L.Oliveira Santos Long-term performance of prestressed concrete bridges 

A.Žnidarič, M.Kreslin, J. Kalin Weigh-in-motion and traffic load monitoring 

I.Farreras Alcover, M.K. Chryssanthopoulos, J. Egede 

Andersen 

Outlier detection based on Structural Health Monitoring of welded bridge joints 

K.Radzicki, S. Bonelli Thermal monitoring of leakages and internal erosion in dams and levees 

R. Szydłowski, M. Maślak, M.Pazdanowski Monitoring of the prestressed concrete slabs with unbonded tendons during erection and in service 

W.M.G. Courage, A.J. Bigaj-van Vliet, W.H.A. Peelen, 

G.T. Luiten, R. Drieman 

Smart Structures for Smart Maintenance 

M.G. Masciotta, J.A.C. Matos, L. F. Ramos The Value of SHM for the Structural Behaviour of Masonry Structures under Varying Environmental Effects 

M. Sykora, J. Markova Assessment of cooling towers and industrial chimneys based on monitoring 

A.Strauss, A. Mandić Ivanković, H.Sousa Performance indicators for road bridges 

A.Tavares de Castro, I. Ferreira, J. Mata Monitoring and structural safety assessment of large concrete dams 

P. Omenzetter, M. P. Limongelli, U. Yazgan A pre-posterior analysis framework for quantifying the value of seismic monitoring and inspections of 

buildings 
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Part II: Summary of the participants’ responses to the uncertainty questionnaire 
 
1. Analysis of measurement uncertainties of the used SHM technology 
 

Contributors Title Context of work Uncertainty types How quantified/treated? 

Barrias & Casas; 

BarcelonaTech 
Distributed optical fiber 

sensing for the SHM of 

concrete structures 

Analysis of 

measurement 

technology 

Measurement uncertainty due to 

strain transfer between the monitored 

structural component and the optical 

fiber itself 

Regression error analysis by comparing the 

performance of distributed optical fiber 

sensing with other sensing techniques 

Schoefs; 

University of 

Nantes 

Uncertainty of 

measurements on the on-

site quality of detection 

Analysis and treatment 

of inspection 

uncertainties in general 

Measurement (and inspection) 

uncertainty 
Establishment of probabilistic model 

 
 
2. Uncertainties in data-driven performance indicators (mainly linked to damage detection) 
 

Contributors Title Context of work Uncertainty types How quantified/treated? 

Masciotta, 

Ramos, Lourenço 

& Matos; Minho 

Development of key 

performance indicators for 

the structural assessment 

of heritage buildings 

Monitoring of crack 

opening rate, towers 

tilting, modal 

frequencies 

Measurement uncertainties, change 

of ambient conditions (temperature, 

humidity) 

Sample variance of static and dynamic 

parameter estimates; no quantification 

related to ambient condition changes 

Moughty & 

Casas; 

BarcelonaTech 

Damage sensitivity 

evaluation of vibration 

parameters under ambient 

excitation 

Damage detection using 

vibration measurements 
Ambient excitation Sample covariance of damage features in 

outlier analysis  
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Hoell & 

Omenzetter; 

University of 

Aberdeen 

Optimal damage sensitive 

feature projections for 

enhanced damage 

identification in wind 

turbine blades 

Damage detection using 

vibration measurements 
Estimation uncertainty of damage 

features (due to ambient excitation + 

measurement uncertainty); 

uncertainty due to choice of model 

describing the data 

Statistical hypothesis tests 

Reynders, Chatzi, 

Döhler, Lombaert 
Monitoring the structural 

health of the Z24 Bridge 
One year ambient 

vibration monitoring 
Estimation uncertainties due to 

ambient excitation and measurement 

noise, model uncertainty of baseline 

model describing range of 

environmental conditions 

Variance estimation of modal parameters, 

damage indicator definition through 

Polynomial Chaos Expansion approach using 

the distribution of temperature parameters 

Omenzetter & de 

Lautour; 

University of 

Aberdeen 

Vibration-based structural 

damage detection via 

statistical pattern 

recognition 

Damage detection using 

vibration measurements 
Estimation uncertainty of damage 

features (due to ambient excitation + 

measurement uncertainty) 

Statistical hypothesis tests 

 
 
3. Model-based performance indicators with uncertainties due to unknown material characteristics 
 

Contributors Title Context of work Uncertainty types How quantified/treated? 

Sienko, Howiacki, 

Maslak & 

Pazdanowski; 

Cracow University 

of Technology 

Structural Health 

Monitoring for Kościuszko 

Mound in Cracow 

Monitoring of soil 

behavior in combination 

with numerical model 

Uncertainty of soil properties 

(heterogeneous soil structure), change 

of ambient conditions (humidity), 

measurement uncertainties  

Sample variance of estimated parameters 

Omenzetter; 

University of 

Aberdeen 

Analysis of in-situ strain 

and temperature data 

from post-tensioned 

bridges 

Strain monitoring, 

calibration of creep and 

shrinkage models 

Estimation uncertainty due to ambient 

excitation + measurement 

uncertainty; model uncertainties after 

calibration from measurements 

Sample statistics, analysis of model errors 



 
 
 
 

Page 20 of 21 

 
 

Pakrashi, 

O’Donnell, Wright 

& Cahill; 

University College 

Dublin and Cork 

Instrumentation and 

Modelling of the ‘Shakey 

Bridge’ in Cork, Ireland 

Vibration monitoring 

due to concern of 

bridge performance 

FE model uncertainty due to existing 

damage in bridge and unknown 

material strength 

 

Rizzo & Gaggero; 

University of 

Genoa 

A posteriori monitoring of 

still water hull girder loads 
Estimation of shear 

forces and bending 
moments 

Data (weight and position of cargo are 

very roughly recorded), model 

uncertainties 

Statistical hypothesis testing 

 
 
4. Fatigue/reliability analysis with performance model uncertainties and measurement uncertainties 
 

Contributors Title Context of work Uncertainty types How quantified/treated? 

Leander; KTH Monitoring and fatigue 

assessment of a critical 

railway bridge in Sweden 

Fatigue assessment in 

combination with 

numerical model 

Estimation uncertainty of load effect 

through stress range spectra, 

uncertainty of material resistance 

(physical) 

Variance analysis of measured response for 

fatigue analysis; FORM to consider 

uncertainties in service life estimations 

Strauss, Slovik, 

Novak, Novak; 

BOKU Vienna, 

Univ. Brno 

Shear resistance of 

prestressed girders 
Probabilistic design of 

precast structural 

members 

Measurement uncertainties, 

modelling and model uncertainties, 

material uncertainties 

Probabilistic inverse analyses techniques and 

neural network approaches 

Sykora, Markova 

& Diamantidis; 

CTU Prague, OTH 

Regensburg 

Structural health 

evaluation of heritage 

structures 

Update of performance 

models with monitoring 

results 

Uncertainties in resistance 

parameters, dimensions, loads, model 

uncertainties, measurement 

uncertainties  

Bayesian techniques for treatment 
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Zonta, Verzobio, 

Cappello; Univ. of 

Trento 

Parameter estimation 

based on Bayesian 

inference: Application to 

a constitutive model for 

intact rock 

Measurement of radial 

strain and axial stress of 

quartz phyllite due to 

axial strain 

Measurement uncertainties, material 

inhomogeneity, model uncertainty  
Bayesian inference, taking into account the 

estimated covariance of the likelihood 

functions 

Alcover, Andersen 

& 

Chryssanthopoulo

s; COWI, Univ. 

Surrey 

Outlier detection and 

fatigue life prediction 

based on structural 

health monitoring of a 

long-span bridge deck 

Development of data-

based models for asset 

integrity management 

Data-based uncertainties due to 

variation of temperature and traffic, 

fatigue model uncertainties  

Autoregressive model to quantify 

uncertainties in de-seasonalized time series, 

Monte Carlo simulation for evaluation of 

failure probability 

 
 
5. Decision making 
 

Contributors Title Context of work Uncertainty types How quantified/treated? 

Zonta, Tonelli, 

Cappello; Univ. of 

Trento 

Determination of a 

decision rule concerning 

the temporary closure of 

Colle Isarco Viaduct 

based on the Expected 

Utility Theory 

Detect possible 

excessive deflections of 

the main span  

Measurement uncertainties of prisms 

(also influence of temperature), 

structural model uncertainties  

Bayesian inference, taking into account the 

estimated covariance of the likelihood 

functions 

Smith, EPFL Uncertainty estimation 

for asset-management 

decision support 

Static or dynamic 

monitoring 
Measurement and model 

uncertainties 
Estimations from practising engineers 

 


