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—
Day 3: Decision analyses \j

Value of Information analyses and decision analysis
types

» Types of Value of Information

= Analyses types

= Derivation of decision rules
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—
Value of Information \j

A Value of information analysis is the quantification of the
utility or benefit gain due to additional or unknown

information.
%ﬁ\% » The Value of Information theory developed by Raiffa

and Schlaifer in 1961.

Choice Chance Choice Chance

Information Qutcomes Actions System states

= An information is characterised by its content, its
precision and its costs.
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Value of SHM Information \j

Choice a Chance X,
No DDS information \ < j/> b,

Choice S

Information s, Outcome Z . Adaptive Action a, Life-cycle Performance X,
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“
Value of SHM Information \j

B —F [b (a 0y )] The Value of SHM Information is defined as the difference
0 X LTOT 170k between the maximized expected benefits with and
*0 without additional information.
a,° =arg max(Exk’I by (2. Xy, )])
% V =B, B,

The relative Value of Information is defined as the
expected benefit gain in relation to the maximized

" * *j expected benefits without additional information.
B, =E, [EX“ b(s7Z, .87 X, )ﬂ P
_ v =B
(s7.a") B,
=argmaxk, {arg max Ej [bi (si L 93 Ky )ﬂ
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Types of Value of Information

Four types of value information analyses are distinguished (Raiffa and Schlaifer (1961)):

= EVSI/CVSI: Expected/Conditional Value of Sample Information
= EVSI: Difference of utilities in pre-posterior and prior decision analysis
= CVSI: Difference of utilities in posterior and prior decision analysis
=  Sample information refers to information with a finite precision (uncertain)

= EVPI/CVPI : Expected/Conditional Value of Perfect Information
= |n analogy to EVSI/CVSI but with infintely precise information, i.e. without uncertainties
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Types of Value of Information

The Value of Expected Information facilitates to optimise a decision before any action is performed.

Value of Expected Information
=  Will the information acquirement be cost efficient?
= Pre-posterior decision analysis

Value of Conditional Information

= Has the spent money for acquiring additional information cost efficient?
= Posterior decision analysis

Sebastian Thons TU1402 Training School 2017



q
Value of SHM Information: Example \j

A wind turbine is operating. The control data reveal that
A | A e | there maybe a problem with resonance of the support
T | structure and the rotor excitations. It is estimated that with
a probability of 20% there is a resonance problem (system

: state x,).
&
oy
5 o . .
= Qy You have two action options:
L T N Do nothing (action a)
Modify the operational range (action a,). This costs 20 as
S the control has to be modified and certified.
A\
/ 30\0‘6*0
A L ML TEencY. . Benefits and costs: a, a,
Rotor excitation 1P X, Noresonance 100 70
Rotor evolutons. X, Resonance -200 70
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—
Value of SHM Information: Example \/

Is it worth to perform an experimental modal analysis?

Based on prior experience and studies you know the probabilities of indication (e.g. P(Z, | X;) = 90%) according to
the table below. The cost of the analysis is 10.

Xl XZ
Z, 09 0.15

Z, 0.1 085

Denotation: e, denotes performing the modal analysis, e, denotes not performing the modal analysis
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q
Prior decision analysis (known information) \/

Result: The operational range should be modified (a,) as doing nothing (a,) leads to lower benefits.

P(X1)= 0.80

50

P(X,)=10.20
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Pre-posterior decision analysis
(unknown information)

Decision tree for example

Sebastian Thons

Prior analysis

Posterior analysis with
additional information Z,

Posterior analysis with
additional information Z,
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Pre-posterior decision analysis
(unknown information)

Decision tree

Sebastian Thons

e0
Z1
B,
O
ZZ

vs)
o x

*

B,

*
Bﬂzz
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Benefit
100

-200

70

70

100

-200

70

70

100

-200

70

70

Costs

20

20

10

10

30

30

10

10

30

30

Total
100

-200

50

50

90

-210

40

40

90

-210

40

40
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Pre-posterior decision analysis
(unknown information)

B, = 685

B, =maxE[B|e,]=P(Z,)-78+P(Z,)-40=0.75-78+0.25-40 = 68.5

R

Sebastian Thons
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Pre-posterior decision analysis
(unknown information)

By = 50
]
eO
B" =68.5
L
— 78
e, Bz ]
P(Z,)= 075
B, = 685 (
P(Z,)=0.25
L
By, = 40

Sebastian Thons

P(X,)= 0.8
P(X,)=0.20
P(X,)= 0.80
P(X,)=0.20
P"(X,)= 0.96
P"(X,)= 0.04
P"(X;)= 096
P"(X,)= 0.04
P"(X,)= 032
P"(X,)= 0.68
P"(X,)= 0.32
P"(X,)= 0.68
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q
Pre-posterior decision analysis \/

(unknown information)

f Result: The experimental modal analysis should be
| S (AR performed (e,) as it is associated with higher benefits.

)
6"
o
Start up Operation

[~ -
\¢
/ ' ‘a@“% -
&t
@0
1%t natural frequency

rd . — e

Freguency

Rotor excitation 1P
. >

Rotor evolutions
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Branches leading to optimal benefits

B =685

Sebastian Thons TU1402 Training School 2017

P"(X,)= 032
114
O X,)= 0.68
P"(X,)= 032
40 /
OP"(X,)= 0.68
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Types of Value of Information analyses: Example

Expected Value X,
of Information T = et S
V =B, -B;
% a X,
.
- X .
X Conditional Value of
S— e ' Information (Z,)
e, ] V|Z,=B, —B;
Z, & X
---------------- B O X,
O
z, X,
B, O X
— 8 Conditional Value of
X .
- : Information (Z,)
X, X

V|z,=B;, -B;
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—
Types of Value of Information analyses: Example \/

50.0

CVSI: Conditional value of sample information:

V|Z,=maxE[B|Z,|-max E|B]

0, a9, &
=78.0-50.0=28.0
V|Z,=maxE[B|Z,]-max E|[B]

9, & a9, &

=40.0-50.0=-10.0

EVSI: Expected value of sample information

V =maxE|[B|e,|-maxE[B|e,]
a9, & a9,

=68.5-50.0=18.5

V, =maxE[B|e,|-maxE[B|e,|=...
a9, & a0, &
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Value of SHM Information: decision analysis types \/
Choice a Chance X,
No DDS information \ < j/> b,

Choice $ Chance ZS_

< {|< Mh

Information s, Outcome Z . Adaptive Action a, Life-cycle Performance X,
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“
Value of SHM Information: Extensive form \j

B —F [b (a 0y )] The Value of SHM Information is defined as the difference
0 X LTOT 170k between the maximized expected benefits with and
*0 without additional information.
a,° =arg max(Exk’I by (2. Xy, )])
% V =B, B,

The relative Value of Information is defined as the
expected benefit gain in relation to the maximized

" * *j expected benefits without additional information.
B, =E, [EX“ b(s7Z, .87 X, )ﬂ P
_ v =B
(s7.a")= B,
argmax k; | {arg max E;kl [bi (si VAR W OF )ﬂ
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Value of SHM Information: Normal form \j

B —F [b (a 0y )] The Value of SHM Information is defined as the difference
0 X ko okl between the maximized expected benefits with and
*0 without additional information.
a,° =arg max(Exk’I by (2. Xy, )])
% V =B, B,

The relative Value of Information is defined as the
expected benefit gain in relation to the maximized
expected benefits without additional information.

BleXH[ESIJ‘XkI[b (57,2, ;.0 (zsi,j),xk,,)ﬂ L, _B.-B,
BO
(sh:a7) =

argmax E, [Es,\xk. [b (S Ly iy (Zsi,j)’xk,l )ﬂ

S; ,d,
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Normal and extensive form decision analyses

Extensive form analysis.

Sebastian Thons

X
a, O
B, X
[ ]
3 X,
O X,
X
. e
By, £
]
& X
O X,
xl
. 8 O
Bllzz X
[
a X,
O X,

100

-200

50

50

90

-210

40

40

90

-210

40

40
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Normal and extensive form decision analyses \j
Extensive form analysis
X 90 _ -
e P"(X,)-b(e,,Z,.2,, X, )
210 +P"(X,)-b(e,Z,,a,, X
, a, X 2 B, = P(Z,)-max ”( 2)0( 21,2, X;)
B, O X, P (Xl).b(el’zl’al’xl)
® 4 +P"(X,)-b(e, 2,8, X,)
Z, X, 90 = _” )
. (W O P"(X,)-b(e,,Z,.a,, X,)
210 +P"(X,)-b(e,Z,,8,,X,)

a, o +P(Z,)-max| >
o 2 [P (x1>-b(e1,z2,a1,xl>J

o +P"(X,)b(e. 2,8, X,)

< n _
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Normal and extensive form decision analyses \/

Definition of Bayesian updating

X 90
* % O " _ . P(lexl)P(Xl)
X 5 P"(X,)=P(X,|Z,)= p(2,)
Z, &4 X 40
B; O X,
® 40
Z, X, 90
g a4 O X
-210
% X, 40
O X,
40
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—

Normal and extensive form decision analyses \j
« 00 Normal form analysis
. 8 O _ -
L P(Z,1%,)-P(X,)-b(e,Z;,5, X;)
z, % X 40 " +P(Z,]X,)-P(X,)-b(e,Z,,8y, X,)
. = MaX
O X, . - P(Z,1X,)-P(X,)-b(e,Z,,a,X,)
z, X e \+P(Z,1%,)-P(X,)-b(e,Z,,a,X,) |
: a O _ ’
: -210 P(lex2)°P( 2)°b(el’ZZ’a0’xl) ]
a N +P(Z,1X,)-P(X,)-b(e,Z,,8,X,)

X
+ MaX (

- s 40 {P(21|X2)°P(X2)° (el’ZZ’ai’Xl) j
(

b
I —|—P(ZZ|X2)-P XZ)-b(el,Zz,al,Xz) ]
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—

Normal and extensive form decision analyses \/

X 90

/ \ -210
4 X

Z, 40
B; O X,
o 40
Z, X, 90
. & O
Bﬂzz X
21
m 0

Sebastian Thons

Decision rules can be identified with the branches
providing the optimal actions.

= Optimal decision rule: do experiment and perform
actions according to outcomes

el
d=|Z, :a,
2,0,

If you do not know the optimal branches, the decision
rules have to cover all branches of the decision tree.
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Normal and extensive form decision analyses \/

« 00 Normal form analysis and identified optimal branches

. A 0=, — ]
/ \ 510 P( ) P(Zl|x ) b(el’zl’aO’X )

. a, y 20 - +P(X,)-P(Z,]X,)-b(e,Z;,8,,X,)

* O -

& 40 : F_}fx1 'n4<11— === 1‘Zl’a"’xl)_

« Za ;)

a O _ -
)-P(Z,1X,)-b(e,,Z,,8,,X,) }

Z
- 2
S s x\z)- (ZZ|X2)-b(e1,Zz,aO,X:)
X Pz b Zoa Xo) J

[
<
~r—— (7 hfa—F
J ° V4 [ |
(X P& éz,‘*'\':l:/par—;) |
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Normal and extensive form decision analyses \/

X 90

/ \ -210
4 X

Z, X, 90
&% O
y X
\31 % 40
O X,
\ 40
>

Sebastian Thons

Normal form analysis and identified optimal branches

B, = P(Zl|X ) (Xl)-b(el,Zl,ao,Xl)

P
+P(Z,1X,)-P(X,)-b(e.,Z;,a9, X,)
+P(Z,]X,)-P(X,)-b(e,Z,,8,, X,)
X

+P(Z,]X,)-P(X,)-b(e,Z,,8,X,)
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—
Normal and extensive form decision analyses \/

We can reproduce the expected benefits with a normal
form analysis.

/ \ -210 B;:40.0+10.0=50-0
X

40

Zl a1 *
B;/ o B, =P(Z,[X,)-P(X,)-b(e,Z,a, X,)
e 0 +P(Z,1X,)-P(X,)-b(e,Z, 8, X,)

X 90

0 - I 0 +P(Z,1X,)-P(X,)-b(e,Z,,a,X,)
16 +P(Z,]X,)-P(X,)-b(e,Z,.a,X,)
2 X, ~64.8-6.3+3.2+6.8=685
\x/ 40
T w V =B -B; =68.5-50.0=18.5
>
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Normal and extensive form decision analyses

The extensive form and normal form analysis are equivalent.

Extensive form
= Analysis form the right hand side to the left hand side
= Bayesian updating required

Normal form
= Analysis form the left hand side to the right hand side
= Definition of decision rules is required.

= Computationally more efficient
= No unnecessary operations
= Only the optimal branches need to be considered (which may be known before)

Decision rules are required for the implementation of a decision process.

Sebastian Thons TU1402 Training School 2017
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Branch eliminating?

Sebastian Thons

/x %0
5 8 O X
2, / \
— 210
Z, 4 X 40
B; O X,
O 40
Z, X, 90
. & O
Bﬂzz X
— -210

TU1402 Training School 2017
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—
Branch eliminating by separation /

The decision analysis is separated in two decision trees. The summation leads to the original decision tree.

Decision tree 1 is only associated with benefits and Decision tree 2 is only associated to action dependent
costs associated with the system states and SHM. costs.

100 10 90 0 0 0

200 10 -210 o 0 0

100 10 90 8020 S0

270 20 250
-200 10 -210

0 0 0
100 10 90

0 0 0
-200 10 -210

-30 20 -50
100 10 90

270 20 250
-200 10 -210
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Branch eliminating by separation

Sebastian Thons

100

-200

100

-200

100

-200

100

-200

10

10

10

10

10

10

10

10

90

-210

90

-210

90

-210

90

-210

Decision tree 1, Normal form analysis

B,, =C, +max

+MaX

TU1402 Training School 2017

P(Z,1X,)-P(X,)-b(X,)
+P(Z,]X,)-P(X,)-b(X,)
P(Z,|X,)-P(X,)-b(X,)
+P(Z,]X,)-P(X,)-b(X,)

P(Z,1X,)-P(X;)-b(X,)
+P(Z,]X,)-P(X,)-b(X,)
P(Z,|X,)-P(X,)-b(X,)
+P(Z,]X,)-P(X,)-b(X,)

—

\/
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—
Branch eliminating by separation \/

100 10 90 Decision tree 1, Normal form analysis

-200 10 -210 B; 1= Cel

100 10 90 _l_(p(zllXl).P(Xl)—I—P(leXz)‘P(Xz))'b(xl)
200 10 -210 +(P(ZZ|Xl)'P(X1)+P(ZZ|X2)'P(X2))'b(X2)
100 10 90

-200 10 -210

100 10 90

-200 10 -210
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—
Branch eliminating by separation \/

Sebastian Thons

100

-200

100

-200

100

-200

100

-200

10

10

10

10

10

10

10

10

90

-210

90

-210

90

-210

90

-210

Decision tree 1, Normal form analysis

Definition of the conditional probability and commutative
law of intersection operator, e.g.:

P(Zl|X1)-P(X1)= P(Zlmxl)
P(lezl): P(X1|Zl)-P(Zl)
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—
Branch eliminating by separation \j

100

-200

100

-200

100

-200

100

-200

Sebastian Thons

10

10

10

10

10

10

10

10

90

-210

90

-210

90

-210

90

-210

Only system state consequences and experimental costs
are considered.

B, =C,
+(P(Z,)-P(X,12,)+P(Z,)-P(X,1Z,))-b(X,)
+(P(2,)-P(X,1Z,)+P(Z,)-P(X,1Z,))-b(X,)
B, =C, +P(X,)-b(X,)+P(X,)-b(X,)

*

B;, =—10+0.8-100+0.2-(—200) = 30.0
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Branch eliminating by separation

X 0O 0 0
5 8, (O X
Z
: O 0 0
|
Z, & X 30 20 -50
B; O X,
270 20 250
Q)
Z, X, 0 0 O
B % O X
ZZ
0O 0 0
|
A X, 30 20 -50
@ X,
270 20 250

Sebastian Thons

\/
Decision tree 2 is only associated to action dependent
costs or benefits.

Normal form with decision rule;

7]

*

B, = P(Zz | Xl)'P(Xl)'b(ai’ Xl(ai))
+P(Zz | X2)°P(X2)-b(a1,X2(a1))

B;, =0.1-0.8-(~50)+0.85-0.2- 250
—38.5
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Branch eliminating by separation

50.0

B, =B, +B;,, =30.0+38.5=68.5

Sebastian Thons TU1402 Training School 2017
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—
Reliability and risk based inspection planning \/

The planning of inspections should account for structural
condition an should be optimised over the service life:
Value of Information challenge.

Let us have a look to an example:

= A component with 8 years of service life with 2
inspections

» The probabilities of safe and failure states are
described with a fracture mechanics (FM) model

» An inspection provides information about the presence
of a crack (indication or no indication) — which is
predicted by the FM model
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Reliability and risk based inspection planning

5 Is:

| OOTEE
“ﬂ“ﬁ

epairfNo Repair

G)(F) sunivalseaiure
OO

OO0 OO OO OO OO OO OO OO OO OO OO KO VO OO OO ®

T8 08 00 08 06 08 ¢

B0 0O OO DO VO OO VO OO DO VO VO VO OO OO OO Bl

OO0 OO OO OO OO OO OO OO OO OO OO OO OO OO VO O

40
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m—
Reliability and risk based inspection planning \/

Symbols:

OnOn0
| | i
. - o

=]

©
ONONO;
DR

i

Sebastian Thons, Arifian Agusta Irman

EFFE-EHE

ol

“96}|
OSOROSE
CHOW@

. .
@ -

The number of branches increases exponentially with the
inspection times and proportionally with the number of
inspection outcomes and actions.

Noranch = (nl N, )”ins

We have a computational challenge. What can we do?
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m—
Reliability and risk based inspection planning \/

AR

‘e s o Introduction of a decision rule: A repair is performed
ndetection . . ) . .
14 ® Detection immediately after an indication of a crack.
2| +4
o | ¢ Can this heuristic be substantiated?
X
8 -. “ . . .
*e 1. Itis Value of Information optimal.
st ® *e
o X2
at 4444444 : ST
. 2. Itis common practice in industry.
2 L 4
*
0 —— 0000000000000 0000000000000-
0 5 10 15 20 25 30

Inspection Time, t;

Irman, A. A., S. Thons and B. J. Leira (2017). Value of information-
based inspection planning for offshore structures. 36th International
Conference on Ocean, Offshore and Artic Engineering (OMAE),
Trondheim, Norway, 25-30 June, 2017.
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Reliability and risk based inspection planning

Year O 3

OO OO O G

-O[1H®
R/N :Repair/No Repair o

@@ :Survival/Failure
@@ ‘Indication/No Indication

66 6 o
oooez;zﬁﬂm

Symbols:

Sebastian Thons, Arifian Agusta Irman TU1402 Training School 2017
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Reliability and risk based inspection planning \/

Year 0 3 4 5 6
| | o >

1 2 7 8
OO O HOTOTG Q%N
slolo looc
How does a repaired component behave?

o — S
@R |
Symbols:
R/N ‘Repair/No Repair o o o

R
@@ :Survival/Failure @'
@@ ‘Indication/No Indication
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m—
Reliability and risk based inspection planning \j

Year 0 1 2 3 4 5 6 7 8

—t— —— — A repaired component may behave like a component with
o HEOOTOOTHOOE ho finding,

® ® ® O -® ® -®-®

O—|-HOOTO

-®©®

Symbols: @@

R/N :Repair/No Repair @ @

@@ :Survival/Failure @@

@@ :Indication/No Indication _® @
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Reliability and risk based inspection planning \/

Year 0
|
|

I R I b
OO OTHTOOOOROCOC
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m—
Reliability and risk based inspection planning: further reading \j

Faber, M. H., S. Engelund, J. D. Sgrensen and A. Bloch (2000). Simplified and Generic Risk Based Inspection
Planning. Proceedings OMAE2000, 19th Conference on Offshore Mechanics and Arctic Engineering, New

Orleans, Louisiana, USA.

Straub, D. (2004). Generic Approaches to Risk Based Inspection Planning for Steel Structures. PhD. thesis. Chair
of Risk and Safety, Institute of Structural Engineering. ETH Zirich.
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Further reading O

Raiffa, H. and R. Schlaifer (1961). Applied statistical decision theory. New York, Wiley (2000). ISBN: 047138349X.

Benjamin, J. R. and C. A. Cornell (1970). Probability, Statistics and Decision for Civil Engineers, McGraw-Hill, New
York. ISBN: 070045496.
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“
Value of Information analysis: Task \j

T Loading S “\ The system on the left experiences high consequences in

case of system damage. A mitigation can be implemented

1 with a cost of 2.5 leading to a reduction of 5 of the system
I damage consequences.

Component 1 C)\ Which information acquirement strategy leads to the
highest Value of Information: an inspection, damage

detection or monitoring?

Component 2
10 m

5m
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“
Value of Information analysis: Task \j

Loading S Damage development (uncorrelated; in mm) with model
uncertainty (fully correlated):

D, ~ N (7.0,1.5)
M ~ LN (1.0,0.2)

Component 1 Component 2 Damage resistance (fully correlated): Lognormal

distribution with a standard deviation of 1.0 mm also
including model uncertainties.

10 m

5m
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Value of Information analysis: Task

Component 1

10 m

T Loading S

Component 2

Sebastian Thons

5m

\/

A probabilistic model for the damage of component 1 is to
developed by using the observations below and the

Maximum Likelihood method.

5.19
6.80
4.63
5.07
4.84
6.14
4.14
6.40
5.02
4.48

3.83
3.20
4.17
5.43
3.95
4.64
1.84
3.68
5.82
5.78

TU1402 Training School 2017
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—
Value of Information analysis: Task \/

T Loading S “\ Assume the following consequences and costs.

I = System damage: 20.0
= Damage of one component: 1.0

Component 1 q _
Component 2 » Inspection of one component: 0.001

» Damage detection system: 0.005
= Monitoring of one component: 0.0005

10 m

5m
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Thank you for your attention.

COST TuU1402: Quantifying the Value of Structural Health Monitoring
www.cost-tul402.eu

Engineering Risk and
Decision Analysis
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