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Introduction — Uncertainty modelling

Uncertain parameters for buildings, bridges, towers, off-
shore structures, wind turbines, ...:

e Loads
e Strengths — load bearing capacity
e Models
Modelled by X = (X,...., X ) : stochastic variables

Types of uncertainty:

e Model uncertainty

e Physical uncertainty Aleatory

e Measurement uncertainty

e Statistical uncertainty: due to limited number of ob- : :
servations Epistemic

Not covered: gross errors / human errors




STOCHASTIC MODELS FOR
LOADS AND STRENGTHS

Extreme loads:

e Gumbel distribution: Extreme wind-, snow- and
temperature loads

e Weibull distribution: Significant wave heights

Largest load on life time: ¥ = max{X,, X,.....X |
X, max. load in 1 year : F,(x)
Yy max. load in e.g. 50 years

F,(»)=F,(»)"

Fatigue loads:
e LogNormal distribution
e Weibull distribution

Material strengths:
e Normal distribution: 1f strength
o can be modelled as a sum of single contributions —
e.g. ductile materials
e LogNormal distribution: if strength
o can be modelled as a product of single contributions
e Weibull distribution: if strength
o depends of the largest defect in material
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JCSS: Joint Committee Structural Safety: http://www.jcss.byg.dtu.dk/



Example - timber
1600 samples from Norway spruce
194 classified as LT20

Bending strength measured

Characteristic value : x, 5 : 5% quantile

Number 194

Mean [MPa] 39.6
COV 0.26
Min. value [MPa] 15.9

Max. value [MPa] 65.3

X, 05 [MPa] 21.6




4 different distribution types are fitted to data:

e Normal

e Lognormal

e 2 parameter Weibull

e 3-parameter Weibull with 7 chosen as 0.9 times the

smallest observed value

2 types of fits:
e fit to all data. Maximum Likelihood Method

e tail fit where only the smallest 30% of data are used.
Least squares method

COV |[x,,s [MPa]

Non-parametric 0.26 |21.6

Normal 026 (224
Normal — tail 0.25 (227
LogNormal 0.28 [24.1
LogNormal —taill |0.38 |22.8
Weibull-2p 0.27 |21.3

Weibull-2p —ta1l  |0.23  [22.8

Weibull-3p 0.26 (23.3
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2 parameter Weibull:
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Mean wind speed
Distribution of all 10-minuttes mean wind speed in a year
can be used to
" estimate the expected energy production by a wind
turbine
* demonstrate sufficient reliability to fatigue

Weibull distribution

Extreme wind speed
Distribution of yearly maximum wind speed can be used to
* demonstrate sufficient reliability to extreme load

Gumbel distribution

12



Stochastic model — SAKO - 1999



Stochastic model — Proqua - 2005



Stochastic model — Proqua - 2005



Stochastic model — Baravalle et al. 2017



Stochastic model — Baravalle 2017



Stochastic model — wind turbines (IEC 61400-1)
Extreme load cases
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Stochastic model — Fatigue — JCSS PMC
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Stochastic model — Fatigue — JCSS PMC
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MODELLING OF SYSTEMS

A system model consists of:

e A number of failure elements each modelled by a fail-
ure function:

g (x)=0, i=12.....m — ——

e Common basic variables in failure functions:

X., i=12.....n

I

e Behaviour of elements: ductile / brittle

fa)  load

(b} load

fracture

f > -

| -~
displacement displacement

Brittle Ductile
T

- 5 - \ —-

22



e Types of systems models:

- Series system:
e

- Parallel system: (next lecture)

- Series/parallel system:

(next gang)
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Example of Series system

Statically determinate truss system:

system fails
if any of the
elements

SR

R B N o B Sl B S S
B BN o BN S AN S BN




Series system fails 1f one element fail — thus:
P; =P(M,<0U...UM, <0)

=P(Q{M, < 0})

m

{5t 0<0)

i=l

=Pthgxnvn<m]

De Morgans rule:

~Pl —aTU<0) 4U..U4,=4N...N4,
Uis A

m

=1-P| | B .—aTU>0})

i=1

:hpfkfug@ﬂ *)

=1-@, (B p) Pij = %i %

@  m-dimensional standard normal distribution

m

Can be estimated e.g. by the Hohenbichler approximation
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Illustration of FORM - Approximation

2 stochastic variables
3 failure elements in a series system:

g.(T())=0, =123

gy(u)=0
p—azu=0
“; g,(u)=0
2 «
B, B, —alu=0
g](_u) =0
0 A u,
B —alu=0

e Hatched area: exact failure domain / failure probability

e In FORM - approximation: linearization of failure sur-
faces in f-points

26



Bounds for Probability of Failure for a
Series system

Simple Bounds:

m

max P(M, <0)<P? SZ(P(V[ <0))

Lower bound is exact if all safety margins are fully corre-
lated

Ditlevsen Bounds
P; =2 P(M, <0)

+§max{1>(w <0)- 3 P(M, <0(\M, <0). 0}

=2 Jj=1

Pfs<zp(w <0)- Y max|{P(M, <0NM, <0)|

i=2 J<I
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Calculation of /3’5- for series system

Series system with 4 elements.

g (u)=exp(u)—u, +3
g,(w)y=u, —u, +5
gs(u)=exp(u, +4)—u,
g,()=0.1u] —u, +4

j\ | 84=0 g1=0/ 8,=0
AN

N 7

4 7\ /JZ_///EFD

3 / = :

2 y; |

1 >
0

.1/ -

2

&
A
XY
=
™
N



Reliability index calculation for each element:

*

I ﬂj (D(_ﬂi) a5 Ay u; “:z
1 (3.51]2276-107%|-0.283| 0.959| -0.99| 3.36
2 [3.54| 2.035-107*|-0.707| 0.707| -2.50| 2.50
3 [3.86|5.738-10° | —0.875| 0.483| —-3.38 1.86
4 14.00|3.174-10°| 0.000| 1.000{ 0.00{ 4.00

Correlation between safety margins:

Py =4; 4,
1.000 sym. |
0.878 1.000

p =

0.712 0.961 1.000
10962 0.714 0.492 1.000

Simple Bounds
B =-D07(2.276-107 +2.035-107* +5.738-107 +3.174-107)

=3.28
B° <min{3.51;3.54:3.86:4.00 | =3.51

Ditlevsen Bounds

3.381< B° <3.383



Probability of failure for series system with » equal-
correlated elements with same element reliability index /.

_ ) 7 _ f '-' 7
b= B} o) =1 Lot of 202 Lot

Pi(p)

A

0.014

.\I,"

fe=23.0

[

—— 11
0,012 e

0.010

~—

0.008

.

0.006

0.004

0.002

0.000

0.0 0.2

(0.4 0.6

0.8
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SENSITIVITY ANALYSIS

Differentiation of:

O-L")=1-D, (B:p)

gives:

dﬂs 1 2 {aq)m(p;p) dﬁr I—la(Dm(B;p)de de

- S ) +22 A
dp @(f")=| Of, dp 2 Opy dp

Often it 1s enough to use:

ap 1 .00, (Bp) df
dp  @o(B°)= 0B dp

dp./dp 1s determined as described 1n note 4
oD, (B,p)/0p, is determined numerically

|
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Elements:

MODELLING OF PARALLEL SYSTEM

(b} load
I/‘ fracture L
.
Ll -~ ]

chsplacement displace t

Brittle Ductile

R o I

Examples:

Parallel system:

fEe

32



MODELLING AF PARALLEL SYSTEM

Statically indeterminate truss system:

A given failure sequence can be modelled by a parallel sys-
tem with n-elements:
|

|

Failure functions g,(u),7=1,..., n models:

1: Failure of weakest element - other intact

2: Failure of next weakest element. after failure of weak-
est element

i: Failure of ith weakest element, after failure of all other
weaker elements

n: Failure of nth weakest element, resulting in global fail-
ure (truss system has become statically determinate)

33



GENERAL SYSTEM MODEL

e Each sequence of failures of the truss system 1s mod-
elled as a parallel system

e Each failure sequence (parallel system) can be mod-
elled as an element in a series system

Generalised series/parallel system:

—

St =t

34



Modelling of failure elements in
parallel system

For a parallel system 1t 1s important to model the structural
behaviour after failure

Perfect brittle element:

load |
failure ,
— .
deflection
Perfect ductile element:
Ioad“
....... failure / f——
—
deflection
Other:
load
Flo.... failure
7 F
0* - :
deflection

35



Parallel system with equal-correlated ductile elements

Consider a fibre bundle of » perfect ductile fibre.

e Strengths R.,7=12....,n, 1dentically normal distrib-
uted N(u,0) and all correlated with p.

e Deterministic load on system S =nS,, where S, 1s load
on each fibre.

e Reliability index for each fibre:

M=,
ﬂ:

o

36



e Strength R of fibre bundle 1s the sum of the single
strengths.

e Expected value and standard deviation of R :

He =3 p=nu
i=l

s}
q“ “ee
qlu

=nc’+nn-c’p

e Reliability index for fibre bundle:

f

[))P=,UR—S= .”’#—”’(#—ﬂo') _ 3 n
¥ »\;’"nO'2 +n(n— 1)0'2,0 "ajl+ p(n—=1)

Note: S =nS, =n(u - po)

37



Example: » ductile elements in parallel system with S, =3

A

0.00150
0.00125 /
0.00100

PR /
0.00075 / /
0.00050

4
0.00025 n= 3/4 /
| - _'__.——!-'-—"'—/_ / n=10
0000 () -prmemme=e=—" = >
0.0 02 0.4 0.6 0.8 1.0
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Parallel system of brittle fibres
(Daniels system)

e If fibre system consists of perfect brittle fibres with
strengths 1, <7, <= <7 :

= max{ nry,(n— 1)1"2 . .,21'”_1, r”}
It is assumed that load effects in each fibre are equal

Example:

D —

39



e If 7,,i=12,...,n : outcomes of independent identical
distributed variables - then for n — «

R ~ N(JUR, O-R)
g =n1[1=Fy (1)]
o =1y Fy (1)[1= Fy (1)

where 7, 1s the value with maximum of:

1= F (1]

40



General Daniels systems

Gollwitzer, S. & R. Rackwitz: On the reliability of Daniels systems. Structural Safety,
Vol. 7, 1990, pp. 229-243.

LL L Ll s 8888l LAl L Ll y

Component {1 2 - + - - n

41



ideal pcrallet system

;J // // / i
. / / // _—
/// |///{=2-0

qu:? b Ok:o

ideal ductile

medium ductile

|_—medium brittle

20 /",_,_ brittle

] ideal elastic -
20 ] >a brittle

| B
10 e
-——‘-—*—___
\deal series system
2N
1 3 5 0 5

42



B
4'sys n=5,03 =20, §,,=1
4.0 T
|
ideal ductile
o NS
medium ductile\%
20 —+ B —
\’Liq?ielastic—brittle
‘,.idealseries system
10 . lsg
0 0.25 0.50 075 10 X

System reliability index versus correlation p, of strength between components.



Probability of failure for Parallel system

A parallel system with » failure elements:
M =¢g(X), i=L2,....n

Transformation from basic variables X to standard normal
distributed variables, U: X =T(U)

44
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Determination of probability of failure for
Parallel system (FORM)

Based on joint S-point u’, linear safety margins are estab-
lished for each of the n, active elements

M, =p -dlU i=12..n,

where
— _vug I(T(u*)) J — T __*
V,g (T(u") ’

i

B =g .5 ... B)).

Probability of failure for parallel system approximatively:

=D, (-p”:p)

P’ = P(ﬁ{ﬂg ~a'U< 0}) - P(ﬁ{—an <—p’ })

D, n4 dimensional standard normal distribution
A

T . - . ~ -
p,; =a,a, correlation coefficients between failure sur-

faces

a7



Bounds for Parallel system

Simple Bounds:

My

0< PP <min(P(M] <0))
i=l1

Upper bound exact: 1f all n4 elements are full correlated:
py =1

If all correlation coefficients, p, = 0:

P> QP(M,J <0)

Second Order upper bound:
PP <mmn P(M] <0NM7 <0)

ij=1

48



RELIABILITY OF GENERAL SYSTEM

Bes B

—{___

Probability of failure for a series system consisting of »n,

parallel systems, each with n,, 7 =1, 2,..., n, elements:

4

7
np My

P :P(U ﬂ{gU(X)£O})

i=1 j=1

g, failure function for element j in parallel system .

Generalised system reliability index:

/85- — D" (l _(D”P (BP; pP))

49
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Reliability level

ISO 2394:2015: General principles for reliability of structures
— Decision making / Design:

1. Risk-informed decision making

— — acceptable and target reliability level for probabilistic
design

2. Reliability-based decision making — probabilistic design
— — partial safety factors for design by e.g. IEC 61400-1

3. Semi-probabilistic method — partial safety factor method

JCSS: Joint Committee on Structural Safety: Probabilistic Model Code

51



Reliability level — ISO 2394

Risk-based decision making involves
» Optimization
Maximization of utility function
(e.g. cost-benefit function)
— target (nominal) reliability
level, Py
» Assessment of Acceptability
Is the decision acceptable from a
societal perspective?
Marginal Life Saving Cost - MLSC
— minimum acceptable reliability
level, P, (wrt. risk to life)

Costs

Risk to life

A

_losses (v

>

Decision parameter p

]:2 acc  Pope
' Risk to life N{p

i Acceptable dS(p) S SWTP
| region dp

<
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Reliability based code calibration

Optimality and Target Reliabilities — Civil engineering structures

« Acceptance criteria may be established on the basis of

— cost benefit considerations = economic optimum reliability level
— LQI (Life Quality Index) = lower limit on reliability level

« JCSS and ISO2394 target reliabilities for ULS verification (1 year reference)

Relative cost of
safety measure

Minor consequences
of failure

Moderate consequences
of failure

Large consequences
of failure

High 3.1 33 3.7
Normal 3.7 4.2 4.4
Low 4.2 4.4 4.7

Relative cost of
safety measure

Target index
(1rreversible SLS)

High 1.3
Normal 1.7
Low 2.3

Limit state

Reference period

Reference period

50 vears 1_vear
Ultimate 4.7
Fatigue 1.5-3.38
Serviceability ' 3.0

(irreversible)
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Target reliability index / maximum probability of

failure

NKB, 1978:

Failure type I: Ductile failures with an extra carrying

capacity beyond the defined resistance.

Failure type II: ~ Ductile failures without an extra carrying

capacity.

Failure type III:  Failures such as brittle failure and

instability failure.
Safety classes:

Less serious: 1- and 2-storey buildings, which only

occasionally hold persons

Serious: Buildings of more than two stories which

only occasionally hold people

Very serious: Buildings of more than two stories and

stages which often hold many persons

Safety class |Failure type I |Failure type II|Failure type III
Less serious |10~ 10" 10~

Serious 10~ 10~ 10°°

Very serious |10} 10° 10~
Maximum annual probabilities of failure.

Safety class |Failure type I|Failure type Il |Failure type II1
Less serious |3.1 3.7 4.3

Serious 3.7 4.3 4.7

Very serious |4.3 4.7 5.2

Target (minimum) annual reliability indices g
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Reliability level — Wind turbines

IEC 61400-1:2017 (FDIS)
Assumptions:

A systematic reconstruction policy is used (a new wind turbine is erected in
case of failure or expiry of lifetime).

Consequences of a failure are ‘only’ economic (no fatalities and no pollution).

Wind turbines are designed to a certain wind turbine class, i.e. not all wind
turbines are ‘designed to the limit’.

Target reliability level corresponding to an annual nominal probability of failure:
5104 (annual reliability index equal to 3.3)

Application of this target value assumes that the risk of human lives is negligible
in case of failure of a structural element.

Corresponds to minor / moderate consequences of failure and moderate / high
cost of safety measure (JCSS) 55



Exercises, self-study and reading

Read / self-study:
« Additional slides on Daniels systems

« Paper by Gollwitzer & Rackwitz on Daniels systems

Exercise:

« Exercise - Parallel system
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Additional slides on Daniels systems
- from S Thons, DTU
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