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1. Introduction
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 Time-dependent behaviour of prestressed concrete
• increase of deformations
• losses of prestress
• redistribution of stresses

 Creep and shrinkage effects

• No agreement between the different code formula
• Code formulae shows limitations for bridge assessment

• Depend on concrete composition and environmental conditions

 High uncertainty
• Creep and shrinkage uncertainty might lead to underestimation of 

deflections 
• Potential loss of serviceability and durability
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2. Long-term observation and assessment of prestressed concrete bridges
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1st part: Monitoring the long-term behaviour – what to measure

Category Parameter SHM technology (sensors)Structure Vertical displacement Hydrostatic levelling systemBearing/Joint displacement LVDTsRotation InclinometersStrain Strain-gaugesSupport reaction Load cellsSpecimens Creep Strain gaugesShrinkage Strain gaugesEnvironment Temperature PT100Relative Humidity Capacitive RH sensor

 Parameters clustered in three main categories: (i) structural measurements, (ii) specimen measurements, (iii) environmental measurements
 Specimen measurements  quantify creep and shrinkage deformations
 Environmental measurements  quantify deformations mainly due to temperature variations
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2. Long-term observation and assessment of prestressed concrete bridges
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1st part: Monitoring the long-term behaviour – where to measure
 Objective is to capture, as best as possible, the long-term deflection of the bridge
 Sensors located where it is expected that they will record the maximum 

expected amplitude, among all the possible locations
 Priori knowledge about the structure behaviour in order to identify the critical 

sections

Example:Monitoring plan of Lezíria Bridge
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2. Long-term observation and assessment of prestressed concrete bridges
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2nd part: Assessment of the long-term behaviour
 Structural models (e.g. FE models) are normally used to get reliable estimations  reference information
 Reliability of those estimations depends on the assumptions made for the structural models
 Collect, as much as possible, real information related to the monitored 

bridge  reduce uncertainty. Models which use real information from the 
bridge are called as updated structural models

 Real information grouped in main five categories: 
 material characterization
 environmental conditions 
 loading
 time-history
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3. Performance indicators for the long-term assessment
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 PI is an abstraction of superior level related to a bridge characteristic, which enables to identify the condition of a bridge

 Assessment of the long-term performance of prestressed concrete bridges based on periodical inspections. 
 SHM technologies provides an important improvement in the assessment through the measurement of selected structural parameters and its comparison with values predicted by structural models

 PI as a dimensionless index (e.g. as a relation between a measured value and a reference value)
 For the definition of PI, the bridge is seen as a composition of two main 

components: 
 bearing and expansion joints and 
 the prestressed concrete structure
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3. Performance indicators for the long-term assessment
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Prestressed concrete structure

௖௢௡௖௥௘௧௘ܫܲ = f(ߪ௖ , ௖݂௧௞ , ௖݂௞)

Bearings and expansion joints

௕௘௔௥௜௡௚ܫܲ ௝⁄ ௢௜௡௧ = f(displacement, maxi݉݁݃݊ܽݎ ݉ݑ)

 Bearing or joint displacement is ultimately restricted by the maximum range of the bearing or joint device
 Maximum range of a 

bearing/joint device and the 
measured displacement used to 
define the PI 

 Ratio between measured and 
reference value is proposed

 Several parameters that can be related to the definition of a PI (e.g. vertical displacement, rotation or strain) 
 Reference values set by the bridge designer is proposed to be adopted 
 An alternative approach is to use the stress level installed on the bridge (obtained based on the updated structural model that is able to best match the collected measurements)
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4. Value of SHM from in-situ characterization of creep and shrinkage

9 / 17

ܸ = ଵܤ − , ଴ܤ  ቊܤ଴   = ܯܪܵ ݐݑ݋݄ݐ݅ݓ ݐ݂ܾ݅݁݊݁ ݈݁ܿݕܿ ݂݁݅ܮ
ଵܤ = ܯܪܵ ݃݊݅ݖ݈݅݅ݐݑ ݐ݂ܾ݅݁݊݁ ݈݁ܿݕܿ ݂݁݅ܮ

 Creep and shrinkage effects are perhaps the ones with highest uncertainty. 
 Long-term predictions differ significantly from the observed response
 Although the majority of shrinkage and creep models are relative recent and 

comprehensive, there are systematic deviations and a lack of consensus in 
their utilisation (mainly thought for design proposes rather assessment)

 Best approach to reduce uncertainty associated with creep and shrinkage 
effects is through long-term observation supported on SHM systems

 Bridge owner/operator benefits in employing SHM systems (i.e. overall, the 
operational costs decrease)
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4. Value of SHM from in-situ characterization of creep and shrinkage
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Lezíria Bridge – a case study

https://jmcostacvitae.wordpress.com/

 Comprehensive case study available in the literature
 Monitoring data collected since the beginning of construction
 Real data related to materials, geometry, and loading
 FE modelling approach based on a full model of the bridge, including a detailed time-step analysis from the beginning of construction

Creep and shrinkage(specimen measurements) Bearing displacement(structural measurements)
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4. Value of SHM from in-situ characterization of creep and shrinkage
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Lezíria Bridge – a case study
B0

B1

B0
B1

B1

B0

Creep and shrinkage (specimen level)

Bearing displacement (structural level)

Value of SHM
B0 – prediction without monitoringB1 – prediction with monitoring

Bearing moves less than expected
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4. Value of SHM from in-situ characterization of creep and shrinkage
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Miguel Torga Bridge
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Miguel Torga Bridge – a case study
Creep and shrinkage (specimen level)

Rotation at the top of P9 (structural level)

Value of SHM
B0 – prediction without monitoringB1 – prediction with monitoring
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5. Conclusions
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 Long-term performance of prestressed concrete bridges is highly dependent on creep and shrinkage effects
 Generally, available code formulae are not suitable to be used for bridge assessment
 Definition of PI depends on the component of the bridge: (i) bearings and 

joint devices and (ii) prestressed concrete structure
 Comprehensive monitoring systems installed on the bridge + updated 

structural models crucial for reliable long-term assessment of the bridge 
with benefit in the reduction of operational costs from the perspective of 
the bridge owner/operator
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