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Example framework for implementation on WT facilities

(Spiridonakos &Chatzi, 2015)

1. WT simulation models

2. Prediction of fatigue accumulation

3. Smart monitoring, inspection
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Part 1a:
Translating data into information



Data Acquisition
Novel Sensor Technologies

Force Displacement Strain and tilt

» -

e

= &

.

%ﬁ 5 4

i

X

‘ ~-‘:;:~_.-_x_.;L_ \

Acceleration Data from GPS

Structural Condition information conveyed through low-cost sensory feedback.




Data Acquisition

Testing Methods

» Marine SructuresTesting Lab
(MaSTeL) — Rizzo et al. (poster)

)

Hull pressures, strain and motion - 2004

shroud stress wave wash Real Time Kinematic GPS ™ - v e . noise & vibration
measurement measurement measurement measurements

» Laboratory of Drives and Experimental Automation
for Marine Systems— Ravinaet al. (poster)




Selection of appropriate indicators and monitoring
techniques

tructural ; i imi
IDENTIFICATION OF SAFETY AND DURABILITY INDICATORS | s e
- Monitored through in-situ sensors Geomeneal L ¢ 3
- Giving friendly-to-users information —y ’Semceabmtv |\ID“ﬁhi”W"m“ | oursbilty
- Informing on key properties related to fulfilling of structural erquirements. limitstate = state ' Indicators

- Serving to check the complying of the material specifications
-With a reasonable range of sensitivity in teh critical values USED SENSORS
-Respecting the classical design procedure of safety, service and explotation.
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i i Meteorological ) . P Video-
E’g::]eslat&?:git;:)? tati 9 Rebar corrosion and Time of wetness in Relative humidity and TAGS ldeorcameras
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deck with respect t : rate, Concrete t densat degree of smart-label tor displ f
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actions, creep or variable ) (rainfall, leackages, etc) concrete converters supports
loads .

» Poster by Andrade et al.



Methodsfor understanding and quantifying the
quality of the data

o0 ROC Curve for Unéierwater Surface Damage Detection
| i — T T T I 5 :

Probability of detection

Performance points obtained
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environmental conditions
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» Poster by O'Byrne et al.
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General purpose methodsfor Bayesian inverse
analysis

Forward UQ
(stochastic description of model output)

input model output
(stochastic parameters X) g(x) Y=g(X)

:

monitoring, data collection
Z=m(Ye) = m(g(X),e)= h(Xze)

Bayesian model updating
(Inverse analysis, parameter identification)

Credible intervals are provided along with the estimates.

Alternative Approach: Model falsification Methods (Goulet & Smith, 2012) 10




Bayesian inverse analysis:
prior model + data (likelihood) > posterior model

likelihood

posterior

PDF

11



General purpose methodsfor
Bayesian inverse analysis

 Analytical solutions thetihood |

posterior

PDF

prior

* Markov Chain Monte Carlo |
(MCMQ) >

» Laplace methodsof asymptotic
approximation

Current Evalustion

» Sequential Monte Carlo | e %
methods (e.g. TMCMC) Do .

» Advanced rejection sampling
(e.g.BUS

p(d,ID)

Bayesian parameter estimation based on vibration measurements

» Poster by Papadimitriou et al.
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Beam flexibility?

Motivating example: Bayesian analysis using deformation

measurements
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Straub D. & Papaioannou, J Engineering Mechanics (2015).

Linear problem with
Gaussian priors and
likelihood

— analytical solution
is available
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Bayesian vs maximum likelihood
Bayesian methodsregulate the problem and give credible

Intervals
— true values
MLE
— = = Posterior 95% credible interval
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Straub D. & Papaioannou, J Engineering Mechanics (2015).
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Markov Chain Monte Carlo

« Without monitoring:

* With monitoring data:

Burn-in
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Markov Chain Monte Carlo

* Powerful general purpose methods
 Difficultiesin higher-dimensional problems
* Included in more tailored methods
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Sequential Monte Carlo methods
e.g. IMCMC

o Sampling density sequentially approaches posterior density

PDF
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BUS:. Bayesian Updating with Structural Reliability
(an advanced rejection sampling approach)

Posterior CDF of X
1
accepted samples
08 | ——— exact
0.6
F,(x)

04
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0 l : : .

4 2 0 2 4 » Poster by Schneider et al.
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Parameter identification in a2 DoF system
lllustrative example from Beck and Au (2002)
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BUS Subset algorithm
Subset ssimulation level 1
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Straub D. & Papaioannou, J Engineering Mechanics (2015).
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BUS Subset algorithm
Subset ssimulation level 2
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21



BUS Subset algorithm
Subset simulation level 3
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Straub D. & Papaioannou, J Engineering Mechanics (2015).
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BUS Subset algorithm
Subset simulation level 4: final samples
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Straub D. & Papaioannou, J Engineering Mechanics (2015).
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BUS Subset algorithm

Subset simulation level 4: final samples

number of evaluations of the
mechanical model: 3099
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Straub D. & Papaioannou, J Engineering Mechanics (2015).
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Bayesian networks
graphical modeling tool with computational advantages




Bayesian networks 3‘@ () — — (@)
E—{)— ) —L)— — —(=)
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o Computationally efficient because of independence assumptions
o Generalization of Markov chain
» Inference:

— Exakt methods (require linear Gaussian models or
discretization)

— approximate methods (sampling, e.g. MCMC - Gibb’s sampler)

26



DBN model for fatigue of the system

Material parameter

Stress parameter
(Equivalent Stress
range)

Deterioration
(crack length)

Observations

Component
condition

Number of failures

System condition
27




Aredundant structural system with 100 elements
(inspecting 10% of componentsevery 10 years)

Inspected system

System without inspection

Reliability index

0 20 40 60 80 100
Time, t

Luque & Straub (in preparation)



System Identification

Isthe process of developing or improving the mathematical
representation of a physical system using experimental data.

4 )
analytical or numerical
model
'l (h .I 1 A LFTELTR : . l ; -'. -‘*l'ujll..""lll.'ll '-I|I'.II_ '-','q'-a'-', T
excitation Vi J dynamic respons'e
| Forward Problem (analyticalnumerical model exists a priori) )
ambient vibration
excitation N response Structural
and/or identification
- b |l
known applied forces |
Inverse Problem (structural model is obtained from experimental data)
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System Identification in SHM

Structural models may be obtained

Analytically Experimentally

(structural
identification)

+ experimental fine
tuning

Information to be extracted:
stiffness, strength, modal frequencies & shapes, damping
30



Sources of Uncertainty 1
n oo\ NS le by

noise
{random)
wit S o
excitation response
(random) (random)

structure \ "W' ol ’ﬂﬂﬂ" '“I*ﬂﬂﬂ
MWMW {deterministic) WVM'L

[t]: discrete time ..., —2,—1,0,1,2,... corresponding to ..., —2Ts, —T5,0, T5,2Ts, ... (Ts: sampling period)

Random (stochastic) excitation: wind, turbulence, traffic, earthquake, combined effects

due to various sources, road or rail irregularities, and
so on.

Random (stochastic) noise: instrument noise, discretization noise, modelling errors

environmental effects and disturbances, interferences.

The structural system: Assumed to be deterministic usually (but not necessarily) and
either linear & time invariant (stationary) or nonlinear

31



System ID Tools

Classification of available System ID methods

PhVSlCS' Time-domain Frequency-domain
ba Sed (ODE and State- (Frequency

. space) response function)

modeling

. Parametric

Data-based S methods (ARMA,
- _ Stochastic

modeling picking, FDD) Sl [ [

Extensionsto non-linear and non-stationary structures

32




System ID Tools

Example Application: Bayesian Approximations

Assuming the prior p(xp) is known and that the required pdf p(xx_1|y1.k—1)
at time k — 1 is available, the prior probability p(xk|y1.x—1) can be obtained
sequentially through prediction (Chapman-Kolmogorov equation):

p(elyk1) = / o S N T W
y

Consequently, the prior (or prediction) is updated using the
measurement yj at time k, as follows (Bayes Theorem):

P(Yk|xk)P(Xk|YI:k—l)
pP(Yk|y1:k—1)

p(xk|y1:k) = P(Xk|Yk, Y1:k—1) =

I



System ID Tools
Example Application: Bayesian Approximations

e Assume all random variable statistics are Gaussian (GRV)

@ The optimal minimum mean square error estimate, X, such that
E[xx — Xx] = min, is given by:

ik = (nptimal prediction nka) + Kk(yk — optimal prediction of yk)

EKF. Propagation of a GRV through the first-order linearization of nonlinear
state space model at current state.

UKF. Uses adeterministic sampling approach (UT) and then propagates
these samplesthrough the true non-linear system.

Sequential Monte Carlo Methods (Particle Hiters): Use alarge number of
weighted particles, concentrated in regions of high probability.

Nonlinear Systems

34



System ID Tools
Particle based methods- Structure

Discrete Monte Carlo Representation of p(xk_, |yl:k_,)

Predict
Draw particles from Importance

Density, p(xk\xk_l) D-- ___®____
;Z:F(xi_l)wk . - %1 unweighed particles ,,,fiik ) (y . )\
P ; R k' "k
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System ID Tools

Application: Join state and parameter Identification for linear or

nonlinear systems
x(7)
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System ID Tools

Application: Semi-active control viaMRDampers

Test Case: Shear frame vibration mitigation
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System ID Tools
Joint Input & State Estimation for prediction of Fatigue Accumulation

x 10

* Fatigue prediction
o Srain-stresstime history
o Satetime history

—
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Novelty/Feature Extraction methods

Changesdueto
environmental
conditionsmust be
distinguished from
those induced by
damage.

Sate-of-the-art

Multi-models

A conventional model
isidentified for each
operational condition.
Regression or
interpolation isthen
used. (Worden et al.
2002, Sohn et al. 1999,
Reeterset al. 2001, Kim
et al. 2006)

Functional models

Data from various
experiment are
processed together. A
global model with
functional dependence
of its parameterson the
measured environmental

conditionsisestimated.
(Lekkas et al. 2009)

Feature extraction

Extract features sensitive to damage
but insensitive to environmental
conditions.

» Pattern recognition technique
(PCA, Factor analysis, and
other,Deraemaeker et al. 2008,
Kullaa 2006, Sohn et al. 2002)

» Subspace model based residual

techniques (Balméset al. 2008)




Novelty/Feature Extraction methods

The Polynomial Chaos Expansion approach

- ~
— non-parametric(— —
1 estimation flay ICA
5 IR of PDF | || Feature
E L] L] D N
o .. e o extraction
|- e '
= — e
Time (h) Temperature (°C) Polynomial Chaos
Expansion
ambient . vibration ICA
excitation |\ | FESPONSE Mgy stem Feature
ID extraction
A L ;:!
—_ o
o)) g . L . 2 ICA
o 0 *e .
Sg | e . e —_— > I Feature
o E . Lo —
< 3 non-parametric extraction
- estimation >
. Average load mass (kg) Q: Characteristic statistical quantity
Time (h) of PDF Z: Vector of uncertainty parameters )

(Spiridonakos & Chatzi, 2013)
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Novelty/Feature Extraction methods

How PCE works: . ENOD)
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Frequency (Hz)
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Z24 bridge (Switzerland 1998)

Condition Index

PCE error

thresholds

T I
O SSl-based estimates
12k o * PCE model (estimation set)
[ s PCE model (validation set)
5 ——— 09-Aug-1998
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Frequency evolution vs. time (see the
temperature influence)
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24m?
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12m?2

Landslide at abutment
Failure of concrete hinge
Failure of anchor heads |

Rupture of tendons |



Overarching Question:

How to exploit the developed methodsand extracted indicesfor decision
making on life-cycle management?

LIFE-CYCLE INTEGRATION SCHEME

STRUCTURAL
RESPONSE

SHM &
SHORT-TERM
ASSESSMENT

TOOLS

PREDICTION &
LONG-TERM

ACTIONS MANAGEMENT

OPTIMAL
DECISION

INSPECTION &
MAINTENANCE
MANAGEMENT

PERFORMANCE INDEX

INITIAL PERFORMANCE INDEX

N DETERIORATION INITIATION
PREVENTIVE
MAINTENANCE

DETERIORATION RATE

ESSENTIAL
MAINTENANCE

WITHOUT
MAINTENANCE

SERVICE LIFE SERVICE LIFE SERVICE LIFE
WITHOUT MAINTENANCE N\ WITH PREVENTIVE WITH PREVENTIVE AND
MAINTENANCE ONLY ESSENTIAL MAINTENANCE
PERFORMANCE THRESHOLD A

. .
7 ~

TIME




Part 1b: Quantifying and optimizing the value of information
Sate of the art

e Bayesian decision analysis framework

 Modeling and computational challenges
— ldentification of decision alternatives
— Life-cycle modeling
— System modeling
— Demanding physical models
— No modelsavailable a-priori

e Existing strategiesto deal with these challenges
— Smart sampling strategies
— Smplified decision rules
— Sensor placement strategies
— POMDP
— LIMID
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a) Decision tree

Monitoring e Monitoring Actions a System
outcome Z state X

Raiffa, H., and Schlaifer, R. (1961). Applied statistical decision theory, Harvard University, Boston,.

Utility u/
Costc
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a) Decision tree

ce)+cla,,x)

Monitoring e Monitoring Actionsa System Utility u/
outcome Z state X Cost ¢

€opt = maxf f(zle) maxf u(x,a,ze) f(xla,z e)dx|dz
e a
Z X

Raiffa, H., and Schlaifer, R. (1961). Applied statistical decision theory, Harvard University, Boston,.
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a) Decision tree

Monitoring e Monitoring Actionsa System Utility u/
outcome Z state X Cost ¢

b) Influence diagram

Monitoring
outcome
Z

Monitoringe Actions a

Monit. cost

Straub 2014: Value of Information Analysis with Structural Reliability Methods. Structural Safety 49: 75-86
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Challenge: Identification of decision context

Bayesian updating

Physical states  _, | imit state functions
of structure

Structural reliabilty
theory
Inspection/
monitoring

Regulations/principles
on safety

B [ —— - o = o my
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Challenge: Large number of possible decision
alternativesover the life-cycle
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Challenge: System modeling

e Inasystem,the number of
possible system states, as
well as possible decision
alternatives, grows
exponentially with number
of components

=T
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a

i ' 3 -.
;
x
g

)
ey
tar

<

)
s
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Challenge: demanding physical models
Number of model evaluations must be limited

N N

Fatigue loads Structural response Crack growth

N
gt
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Stategy 1: Limiting
decision alternatives
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! B Detection P
Detectl_on Failure & repair T
& repair

Survival
other repair
options
} | | | -
=0 Inspection 1 (e.za) Inspection 2 (e,z a) Time
Failure _ Failure _ Failure
No Repair _—* No Repair _—* —
I - \
: Survival Survival Survival
I Repair Repair
| | | ‘_{>€
I TSL,new - TSL i l I
L — — — — — — — - — — — o o — — — — -+ — — = e e e - - -
| | | -
| Ll ‘
=0 Inspection 1 (e,za) Inspection 2 (e,z.a) End of service life 7,
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Concise model of aircraft operation
For optimizing the monitoring system

» Poster by Cottone et al.

Time ¢
Planned Inspection ¢ i
At (FH)
S N l
:_‘_‘_‘_‘_‘:_‘_‘_‘;C"_[;_‘_‘_ ________ :::::_‘::::i:::::_‘:_‘:_‘:_‘:_‘:_‘:_‘_‘:_‘_'
E ¢ -- Repair
| O  SHM run

Red Sign g
g Green Sign

¢;  Cost of Planned inspection
¢;  Cost of red alarm of SHM
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Optimize monitoring systemsin aircraft structures

2.0+ 1

Expected cost
(normalized)

1.5¢

Information

1.0 N AT LLLIniasas

05| Cost of

Cost of scheduled inspections .
- groundings -

0'0 1 L 1 1 L 1 L L 1 L 1 L L 1 1 L L 1
0.20 0.25 0.30 0.35 0.40 0.45
SHM threshold y,

Cottone G, Gollwitzer S, Heckenberger U., Straub D. (2013). Poc. IWSHM 9, Sanford University. 55



Concise decision models

» Poster by Schweckendiek

Strategy (S) Expected Probability Qutcomes & Conditional Cost
Cost (EC) Mitigation Actions

levee still unsafe after reliability
updating: P(Fyle) > pru) Cmonitor + Cherm = 10°¢€
= berm required

ECg = 7x10%

levee safe after reliability
updating: P(Fule) < pr.) Comonitor = 10* €
=» no berm required

ECso= 10° Cherm = 10°€
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Stategy 2: Smart sampling techniques

e |Importance o NS
sampling idea: d RN
focus samplesin 4| R o
the region of 3|
interest (where g
decisionschange) “,I_I’ 1

3

* Further o1
developments -1}
possible and 2l
necessary R

Straub D. (2014). Value of Information Analysis with
Structural Reliability Methods. Structural Safety 49: 75-86 57



Value of information as afunction of measurement accuracy
Results obtained with 10° samples (for areliabilty problem)

4000

| Value of perfect information VoPI = 3450

3500

3000

2 me rement
2500 | asu S

2000 f
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1500

Value of information Vol

1000

500

0.1 1 10
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Strategy 3: Methods used for optimizing sensor placement

4 N

Lack the possibility for UQ

!

e Hsher information matrix

wsmarec || [Krammer, 1991], [Shi et al., 2000]

Bayesian Approach

[Heredia-Zavoni and Esteva, 1998],
[Papadimitriou & Beck, 1998], [ Yuen,
Katafygiotis, Papadimitriou & Mickleborough],
[Hynn & Todd, 2010],
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Strategy 4: POMDP

— Maintenance is (control) actions and inspections

— Under constraints of money, time, labor, safety, environment, ...
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Fully Observable MDP Partially Observable MDP

Strategy 4: POMDP

observation

A POMDP framework consists of the tuple {S, A, T',Q, O, R}, where
@ S is the set of system states
@ A is the set of actions
@ T:85x A—1II(S) is the transition model describing p(s'|s, a)
@ (2 is the set of discrete observations
@ O:85x A—TI(Q) is the observation model describing p(o|s)

@ R is the reward function as r,(s) € R

Discrete time steps

The updating of a given belief state using Bayes' rule is (continuous
states):

oy _ PO [
ee(e) = 55 | p(d1sa) b (1)
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Strategy 4: POMDP

Verrazano-Narrows Bridge, NY
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Strategy 4: POMDP

The system state S is 1-dimensional with a range 0 < s < 1. (0 for
failure, 1 for optimal condition of the bridge), e.g. damage index through
vibrational data (natural frequencies)

Cost for failure of the structure Chjjure = 1000.

Observations
(1 . . . . .
o Three possible inspection methods: “doing nothing” ( Cuoing nothing = 0),
“visual inspection” (Cyisual = 1), and “ND testing” (Cnp = 5)
g 1 1
0.8 0.8
5 H
5 0.6 8 0.6
& g
T T T T I 0.4 0.4
0 u 1
0.2 0.2
Actions
doing nothing painting GCI 0.2 0.4 . 0.6 0.8 1 GO 0.2 0.4 . 0.6 0.8 1
Th ti del >
€ action models are 15 N Mis (a) Visual inspection (b) ND testing
defined as the sum of a - | 10 Toslod 10
deterministic component = 5 5
and a stochastic ok
component: 0 05 05 1
Xt xl
’ welding replacement
s = f(s) = ps(s) + €(s) -
15
x0. /: z0. 10
5
Cdoing nothing — 0 0
0.5 1 0 0.5 1
Cpainting = 10 X, X,
c‘(\.«.'elq;{ing = 50
63
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: POMDP

Strategy 4

li’..................

404

WOURIGN RIREITE
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Stategy 5: LIMID —Limited Memory Influence Diagrams

 Include forgetting
to facilitate
computations

 Extension of BN

Taken from Nielsen and Sorensen
(2010). Bayesian Networks as a
Decision Tool for O&M of Offshore
Wind Turbines Nielsen, Proc.
ASRANet
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thres

Optimization of sensor interpretation through

decision graph

oring
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0.996 |

0.994 |
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Pareto optimal solutions

Inefficient solutions

1 2 3 4

Probability of False Alarm %107

Sattele M., Briindl M., Straub D.: Reliability and Effectiveness of Alarm Systems for Natural Hazards.

Reliability Eng & System Safety, under review.
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Discussion on content

Did we leave out something?
Should some methods/ theories be ommited?
Do you think that the focusisin the right direction?
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Considerationstowards quantification

In extracting quantifiable quantities, it isimportant to come up with suitable
Indicators. What should these address, to better satisfy the needs of
owners/operators?

Optionscould pertain to

(a) safety; (b) serviceability; (c) availability, robustness; (c) the total LCC, (d)
environmental efficiency: CO2 foot-print.

Should the short (extreme events/damage) or long-term
(deterioration/fatigue/operation under varying environmental conditions)
aspect of monitoring be at the centre point?

Should asegregation regarding dynamic and static monitoring be made?

How to best cross-compare available alternatives? Can we create a
computational or field testing benchmark?
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Goalsof the WG 3
(to be discussed)

« Compilation of the state of the art
— Years 1&2
— ->review & discussion paper

* Improved methodsand tools:
— Year 1-3 (with WG 2&4).

— Motivate and support the development of new and improved
methodsand computation tools

— Develop joint proposalsto support thistask
* Repository
— Years1-4

— Establish an online repository of tools, publications and teaching
materials
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Organisation

Preliminary time plan (until summer 2016)
* Preparation of adraft overview report by a core team

» Workshop in early 2016, with presentations on different methods
and adiscussion of the draft report

» Hnalizing the review in summer 2016

One core team responsible for the review
One core team responsible for the online repository
Initatives and contributions from everyone are welcome!
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