
BNs can efficiently model single component 
deterioration

BNs have become popular in engineering risk analysis due to their intuitive nature 
and their ability to handle many dependent random variables. The graphical 
structure of the BN is formed by nodes and directed links. The nodes represent 
random variables or deterministic parameters, and the links the dependence 
among nodes. BNs allow quantifying the impact of inspections and monitoring on 
the reliability of the structure, and so facilitate maintenance decisions and the 
planning of future inspections. In the past, Bayesian analysis has mainly been 
performed at the component level, e.g. Figure 1 shows a BN deterioration model 
where the probability of failure of a single structural component is updated using 
inspection and monitoring outcomes [1].
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Fig 1. Generic BN of the deterioration model at the 
component level. The sub-index indicates the time step.
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The structural system is modeled through a 
hierarchical Bayesian network

Only a few publications consider the updating of the reliability at the structural 
system level. We have extended a BN model from the component to the system 
level and provided an efficient algorithm that assesses the reliability of a 
deteriorating system when partial observations of its condition are available. The 
deterioration factors of the system components are interrelated using a 
hierarchical structure and a set of hyperparameters α, which model the correlation 
structure among components (Figure 2). The algorithm for performing Bayesian 
updating at the system level is based on the forward-backward algorithm for exact 
inference and operates recursively among components and time steps [2]. 
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Fig 2. Generic BN of the deterioration model at the system level. 
The sub-indices indicate the component number and time step.
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Given the observations, the system reliability is 
updated accurately and faster

Comparison with the standard Markov Chain Monte Carlo (MCMC) algorithm 
shows good agreement in different case studies, e.g. the Daniels system (Figures 
3 and 4), and Zayas frame (Figures 5 and 6). Computation times are orders of 
magnitude lower than MCMC and are independent of the magnitude of the 
probability of failure and of the number of inspection and monitoring results.
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Fig 3. Daniels system with independent and 
identically distributed capacities R_1,…,R_N

 and external load L.

Fig 4. Reliability index of the Daniels system with 
10 components after no detection of a crack in all 

inspection times (every 10 years) using exact inference 
(BN) and Markov Chain Monte Carlo. Results are also 

compared to the reliability without inspections.
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Fig 5. Zayas steel frame structure 
subject to fatigue deterioration 
with 22 hotspots (white circles) 

and external load L.

Fig 6. Reliability index of the system for the conditional 
case (i.e. with inspection) with observations from 
hotspots 1 to 4 at time steps 10, 20, 30 and 40. 

A measurement of 0 represents a no-detection case.
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