COST TU1402: Quantifying the Value of Structural Health Monitoring

Short Term Scientific Mission Report

Application of Bridge Weigh-in-Motion measurements in assessment of existing road bridges.

Dominik Skokandić Faculty of Civil Engineering University of Zagreb

VALUE O STRUCTUR HEALTH

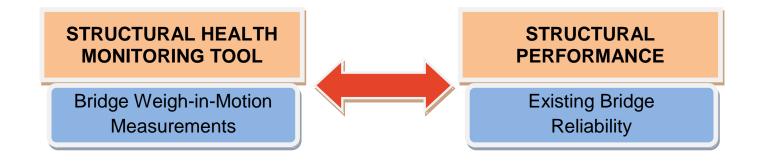
General Information

STSM Title: Application of Bridge Weigh-in-Motion measurements in assessment of existing road bridges.

STSM Duration : 09-05-2016 to 27-05-2016

Location: Slovenian National Building and Civil Engineering Institute (ZAG), Ljubljana, Slovenia

Host: Mr. Aleš Žnidarič, Head of Section for Bridges and Other Civil Engineering Structures, Slovenian National Building and Civil Engineering Institute


STSM Participant: Dominik Skokandić, Department of Structures, Faculty of Civil Engineering, University of Zagreb, Croatia

Purpose of the STSM

Main purpose: To study and analyse application of B-WIM measurements, as a part of SHM, in load carrying capacity assessment of existing bridges.

Long term outcome: To create a valuable link between a certain monitoring tool and corresponding structural performance of interest.

Main focus during STSM: To relate B-WIM data with theoretical bridge models, developed in *Sofistik* software, in order to upgrade them and to obtain more realistic assessment results.

Background and Motivation

- Development of Multi Level method for assessment of existing road bridges.
- Age of existing bridges in Croatia and region.
- Conservative assumptions in current European standards for design of new bridges.
- Opportunity to work and learn with world leading experts in WIM technology in Ljubljana.
- Opportunity to observe field measurements on existing bridges carried on by professional personnel.

D. Skokandic, Faculty of Civil Engineering University of Zagreb

Background and Motivation

- Weigh-in-Motion (WIM) method of measuring vehicles as they drive over measurement sites, without slowing down or stopping.
- Data provided:
 - Vehicle gross weight
 - Axle weights
 - Axle number
 - Axle spacing
 - Vehicle speed
 - Time stamps
- Bridge Weigh-in-Motion (B-WIM) WIM method that uses existing bridges as weighing scales minimum traffic interruption.
- B-WIM data can be used to site specific load models for certain time periods.
- Additional structural parameters:
 - Realistic influence lines
 - Dynamic amplification factor
 - Transverse load distribution etc.

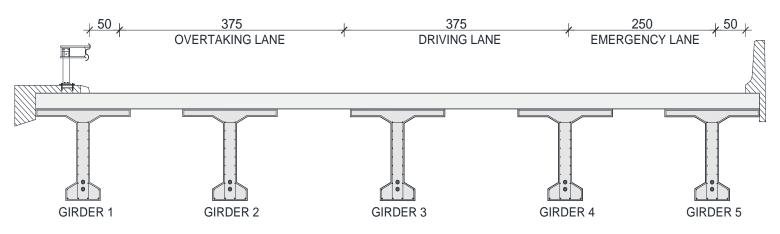
STSM Work Plan

• Multi level assessment of Case Study Bridge:

Load carrying capacity assessment according to standards for design of new bridges, and based on theoretical bridge model.

Modified bridge model based on realistic influence lines, obtained from B-WIM measurements.

Bridge model from previous level is additionally modified with transverse load distribution factors to take into account eventual cracks and stiffness reductions.

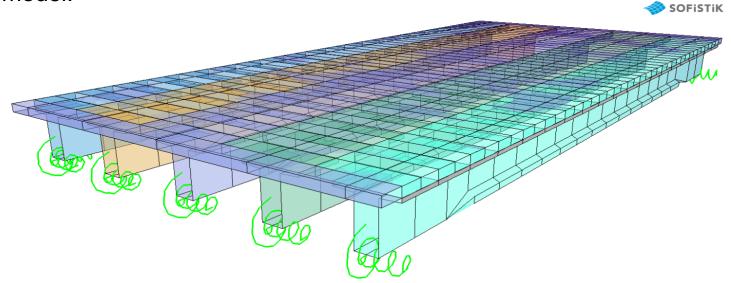


Site specific load effects, obtained from B-WIM measurement and post-processing, are applied in load carrying capacity assessment.

VALUE OF STRUCTURAL HEALTH MONITORING HOUSE HEALTH HOUSE HEALTH HOUSE HO

Case Study Bridge

Bridge description:



- Simply supported highway bridge.
- Single span of 24,8 meters.
- Original design plans were available from archives.
- B-WIM data available.
- Cross section resistance to bending is calculated using built in reinforcement.

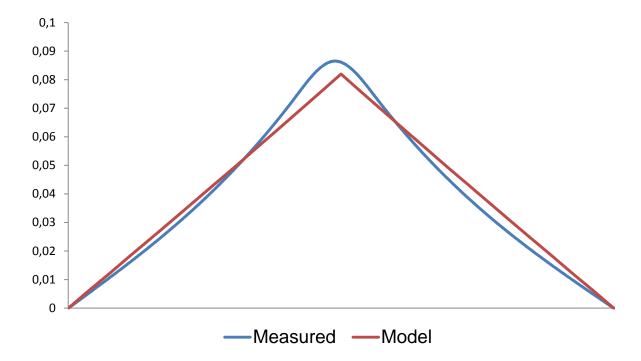
Case Study Bridge

Bridge model:

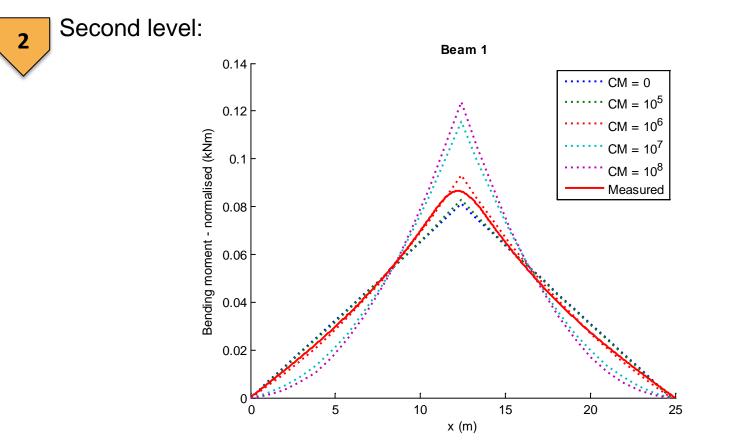
- 3D model developed in *Sofistik* software.
- Grillage method transverse load distribution.
- Additional rotational springs on supports.
- Only permanent actions and traffic loads taken into account in load carrying capacity assessment.

Initial level:

1

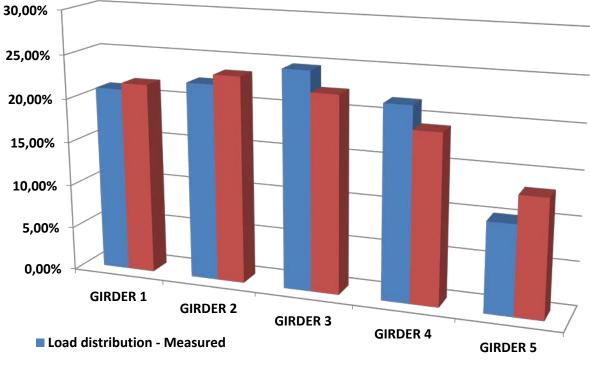

- Partial factors for materials and loads according to standards for design of new bridges.
- Theoretical influence line and transverse load distribution.
- Permanent action (self-weight, fixed equipment and road surfacing) calculated based on original plans.
- Traffic loads according to Eurocode Load Model 1.
- Linear analysis in *Sofistik* software.

Second level:


2

• Comparison between measured and theoretical influence line:

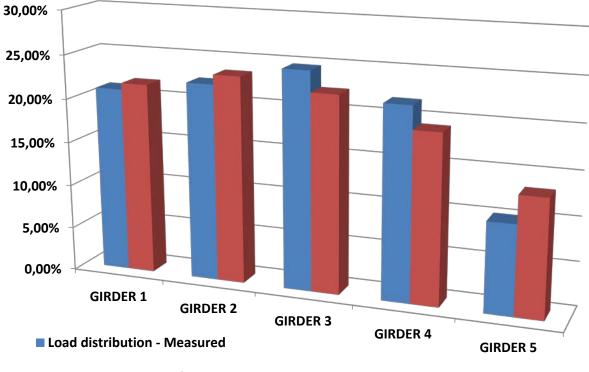
- Realistic bridge behaviour is not simply supported.
- Modification of bridge model with additional rotational stiffness.


• Modification of influence line \rightarrow Reduced bending moments.

Third level:

3

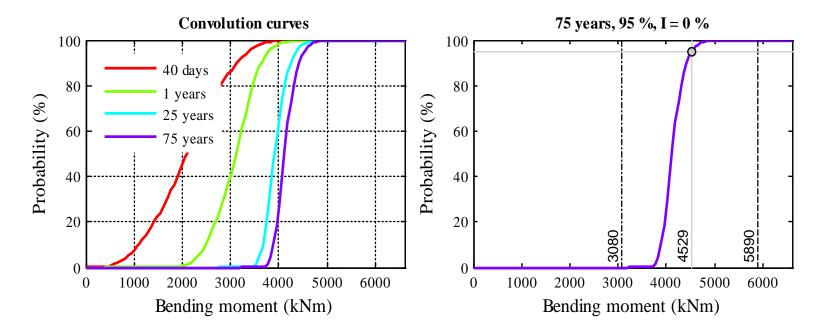
- Comparison of measured and theoretical transverse load distribution.
- Useful to discover any type of degradation (cracks, stiffness reduction etc.).



Third level:

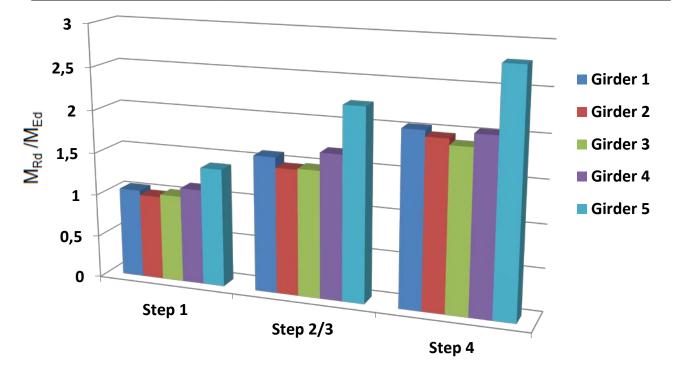
3

• No significant difference – results as in level before (expected due to no visible signs of degradation).

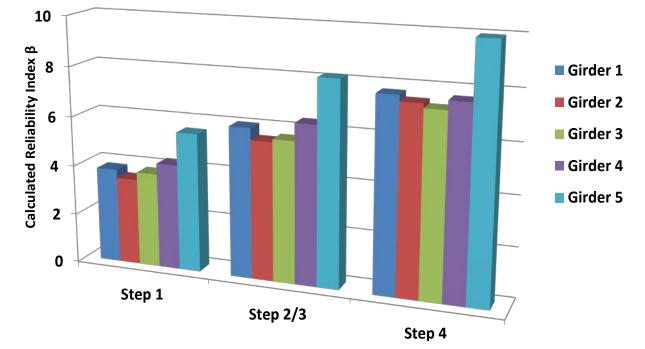


Final level:

4


- Traffic load effects obtained from B-WIM measurements.
- Extrapolated for a period of 75 years using extreme value theory.
- Partial factors as in previous levels.

Assessment results (deterministic):


	G1	G2	G3	G4	G5	
M _{Ed} [kNm] – Step 1	7553,63	7968,83	7728,16	7030,85	5686,29	
M _{Ed} [kNm] – Step 2/3	4963,38	5367,21	5317,27	4668,96	3522,73	
M _{Ed} [kNm] – Step 4	3881,22	4021,17	4171,04	3870,53	2824,62	
M _{Rd} [kNm]	7901,76					

Assessment results (probabilistic):

	G1	G2	G3	G4	G5		
β – Step 1	3,82	3,49	3,81	4,25	5,58		
β – Step 2/3	6,02	5,55	5,67	6,37	8,16		
β – Step 4	7,73	7,49	7,31	7,67	9,96		
β_{target}	3,8 – for design of new bridges						
	3,7 – for ex	3,7 – for existing bridges of similar age [Kotes and Vican, 2013]					

Conclusions

- **Existing bridges**: Results clearly show the quantification of WIM measurements as a part of SHM tools for load carrying capacity assessment.
- Economic aspect:

• **Bridge Management:** WIM data can be used for early discovery of non-visible degradation of bridge elements (as described in step 3 of assessment procedure).

COST TU1402: Quantifying the Value of Structural Health Monitoring

Thank you for your attention!

Dominik Skokandić Faculty of Civil Engineering University of Zagreb

