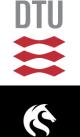


Value of Information in System Resilience Modelling


Short Term Scientific Mission 16/04/2016 - 30/04/2016

Dr. Simona Miraglia,

Civil Engineering & Global Decision Support Initiative, Technical University of Denmark

Prof. Mark Stewart, CIPAR, University of Newcastle, Australia

Prof. Michael Faber, Management Engineering & GDSI, Technical University of Denmark

Contents

- Motivation and Scope
- Review of Resilience Definitions and Assessment Methods
- Model
- Bayesian Net and evaluation of Vol
- Conclusions

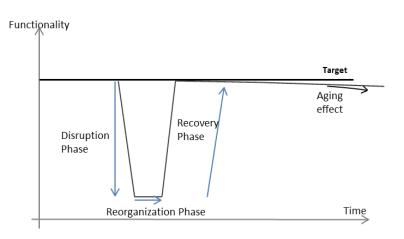
COST TU1402: Quantifying the Value of Structural Health Monitoring

- Motivation and Scope
- Information is an asset itself \checkmark
- When resources are limited, their use needs to be optimal \checkmark
- System performance under hazards depends on the degree of interaction among its components and the degradation state of the components
- SHM allows assessing the conditions of system components to support asset management decisions 🗸
- Can we use Vol for wider purpose besides SHM?
- When modelling system resilience, which information are we really seeking for

Resilience Modelling : Definition

- Complex system of humans, infrastructures and nature
- Devastating consequences (functionality losses, economic losses, safety and health of people, environmental damages, etc..)
- Resilience is a core issues in many fields of science:
 - Psychology, 'individual's tendency to cope with stress and adversity';
 - Material science, 'capacity of material to absorb energy when it is elastically deformed';
 - Engineering context, 'ability of the system to return to a stable state after a perturbation';
 - Ecology, 'ability of the system to maintain their integrity when subject to disturbance, i.e. to return to a position of equilibrium when disturbed'.

The 'return of information theory' in the context of resilience assessment is mentioned only in Ulanowicz et al.(2009): 'Quantifying sustainability: Resilience, efficiency and the return of information theory'.


Resilience Modelling: Approaches

- The approaches to resilience assessment can be divided in three main groups:
- 1- Mathematical approaches which are using system stochastic dynamics and classic operative research algorithms to find the final (or sequential) equilibrium point for the system adapting and recovering after disturbance;
- 2- Engineering system approaches focused on the recovery time merely of structural/electronic/IT network systems;
- 3- Eco-system service approaches where resilience property focuses on modelling eco-system equilibrium and assessment of the eco-system service in both evolutionary context (anthropology and palaeontology) and toxicology and ecological disaster management (pollution and loss of species).

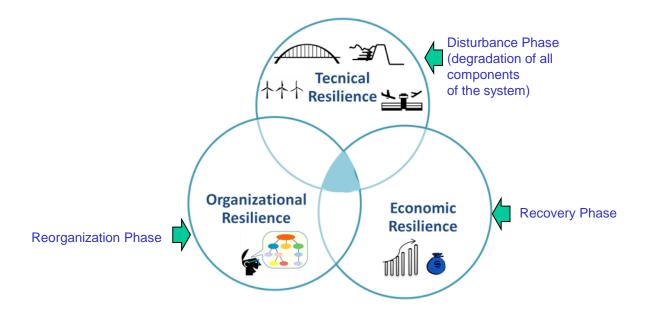
Resilience Modelling: Resilience curve

 Common basis for most engineered system approaches for resilience characterization is the identification of three main phases of functionality transition of the generic system after disturbance

- disruption phase due to the damage of the system subject to the perturbation (natural hazard or human interference), whose duration depends on the characteristics of the system (vulnerability and robustness).

- reorganization phase, whose duration depends on emergency management policy, represents the phase in which the necessary resources for the rehabilitation of the systems are mobilized and allocated

- system rehabilitation phase, which strictly depends on the recovery ability of the system

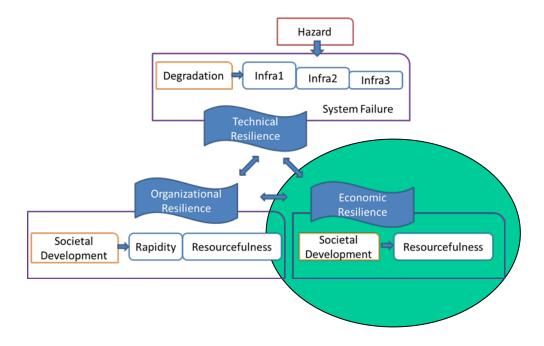


Resilience Modelling: System representation

- Chang&Shinozuka: resilience assessment is related to the quantification of total economic losses where three components of the losses are considered: damage to assets, population affected by the disturbance and economic losses.
- Bruneau&Reinhorn: a resilient system shall not be able just to confine the damage within certain limits but also have resources available to speed up recovery where resources are intended as socio-economic resources as well as materials and natural resources.

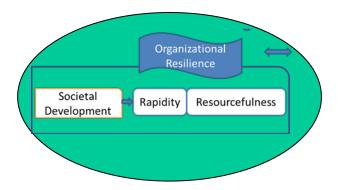
Resilience Modelling : 3D

- Three dimensions of resilience :
 - 1- Technical resilience;
 - 2- Organizational resilience;
 - 3- Economic resilience.

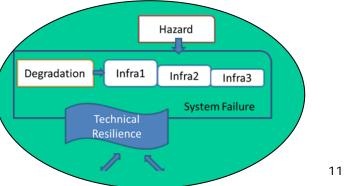

DECISION THEORY

VALUE OF STRUCTURAN HEALTH MONITORING

Resilience Modelling: Economical Resilience

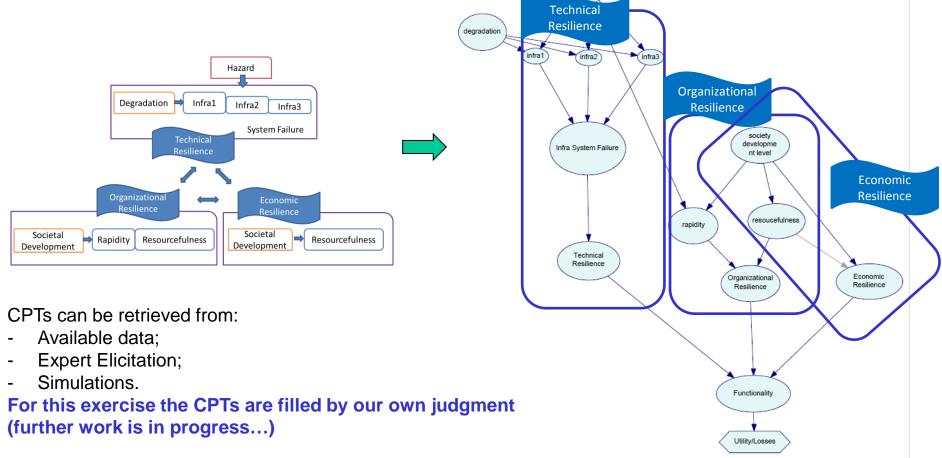

- It is related top Societal Development and Resourcefulness
- Forecast of the economic resilience can be made.

Resilience Modelling: Organizational Resilience


- It reflects resourcefulness and rapidity of the society.
- The rapidity to react and recover can be related to the society development level (developing country, developed country)
- Resourcefulness, depends on the resources available to speed up recovery
- Observation of resourcefulness can be made by observing the availability of resources (for example natural resources for material, energy etc.)

Resilience Modelling: Technical Resilience

- Performance of a generic infrastructural system subject to a certain hazard (three separate structures, Infra1, Infra2 and Infra3 ordered from the strongest to the weakest with respect to the resistance to the hazard event)
- Three structures has a fixed probability of failure with respect to the intensity level of the hazard (daily maxima, yearly maxima, extreme event)
- Probability of failure depends on the degree of degradation of the structures (low, average, high)
- Observations of the degradation level can be made
- System failure occurs with probability which depends on combinations of Infra1&2&3 failed



Resilience Modelling: Utility Model

- The overall functionality is modelled as percentage of total available functionality (none as 100% lost functionality, low as 90% lost functionality, average as 50% of lost functionality, high as fully functioning)
- It is assumed that utility and losses are directly proportional to the functionality (1unit for each %functionality)
- Cost of SHM is 5units while the cost of monitoring the resource availability and to forecast economy are 10units each.

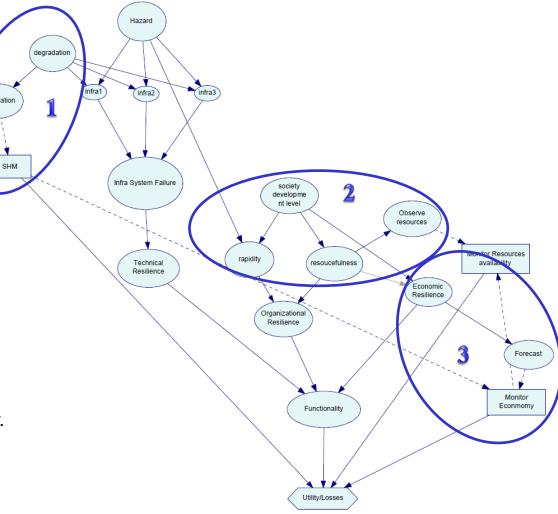
DECISION THEORY

Bayesian Network Model for evaluation of Value of Information

observation

Bayesian Network Model for evaluation of Value of

Three monitoring strategies


1-SHM finalized to assess the degradation level of the infrastructure system (Technical Resilience component);

2-Monitor resourcefulness to assess availability of resources (Organizational Resilience component);

3-Forecast economy (Economic Resilience component).

The three strategies are assessed separately.

Which strategy has the highest value of information?

DECISION THEORY

VALUE OF STRUCTURA HEALTH MONITORING

Example: Value of Information based on Functionality

General case					
Monitoring Degradation.	0.014				
Monitoring Resources	0.028				
Forecasting Economy	0.028				

Developing Country	Daily max	Yearly max	Extreme event	Developed Country	Daily max	Yearly max	Extreme event
Monitoring Degradation.	0.004	0.009	0.057	Monitoring Degradation.	0.016	0.081	0.427
Monitoring Resources	0.008	0.019	0.113	Monitoring Resources	0.032	0.163	0.925
Forecasting Economy	0.008	0.019	0.113	Forecasting Economy	0.032	0.163	0.925

Conclusions

- The Value of Information can be used in wider context than SHM
- Resource Availability and Economic Resilience have higher impacts on system functionality
- The value of information is higher with respect to the socio-economicenvironmental indicators
- Results are quite sensible to model input variables and more testing is needed before generalizing the results

.....Work in Progress

- Faber, Miraglia, Stewart. *Decision Analysis for Societal Systems in the Anthropocene– on Vulnerability, Robustness and Resilience.* (Journal paper draft)
- Miraglia, Faber, Thöns, Stewart. Value of information in system resilience modelling: reducing uncertainty on system functionality using monitoring. (with new model in preparation)

COST TU1402: Quantifying the Value of Structural Health Monitoring

Thank you for your attention!

Questions? Comments?

