COST TU1402: Quantifying the Value of Structural Health Monitoring

ViBest_SHM: A digital data repository for SHM

Álvaro Cunha, Elsa Caetano, Carlos Moutinho, Filipe Magalhães

10 Dynamic Monitoring Programs

Infante D. Henrique Bridge

Braga Stadium Roof

Trezoi Bridge

XIX

ViBest

Grande Ravine Bridge (Indic Ocean)

Wind Turbine

Tua Bridges

Objectives of Dynamic Monitoring

- Monitoring of human induced vibrations for vibration serviceability safety checking
- Monitoring of dynamic effects of traffic loads in roadway and railway bridges and fatigue assessment
- Dynamic monitoring for damage detection in bridges
- Dynamic monitoring of wind effects in large bridges and suspension roofs
- Vibration based SHM of wind turbines
- Vibration based SHM of concrete arch dams

Monitoring of human induced vibrations for vibration serviceability safety checking

• Pedro e Inês footbridge (Coimbra)

L=275m

Parabolic arch 110m span, 9m rise 2 half-arches 64m long, asymmetric box section Composite deck, 4m width Arch foundation: massifs of 35m deep vertical piles

U. PORTO FEUP FACULDADE DE ENGENHA

Dynamic tests at the end of construction Crowd tests (excessive lateral vibrations)

• Variation of response with number of persons on the bridge

ViBest

Forced vibration tests

Evaluation of the efficiency of the TMDs

- Multiple units of the same TMD reduce global efficiency

-TMD design based on linear viscous damper is unconservative in this application

ViBest MMMMMMMMM

Opening day

ViBest

6 uniaxial piezoeletric accelerometers

Observation centre

- Data acquisition from static and dynamic monitoring systems
- Data transmission

ViBest MMMMMMMMM

Website

ViBest

Histograms of maximum daily accelerations (Jun 2007- May 2010)

U.PORTO **FEUP HARIA** FACULDADE DE EN UNIVERSIDADE DO PORTO

Santo Tirso footbridge **Excessive vertical vibrations**

Designer: SOPSEC, Portugal

Steel arch, 60m chord, 6 m rise Length= 84 m; Width: 5 m Deck: 0.15 m thick light weight concrete slab supported by steel girders

U.PORTO **FEUP** FACULDADE DE EN UNIVERSIDADE DO PORTO

Experimental characterisation of the dynamic behaviour

Natural frequency and mode configuration

Experimental characterisation of the dynamic behaviour

Pedestrian tests

Crowd walking (1/10th design number of pedestrians) (estimated with 0.5P/m² : 1.5 m/s²)

Jogging

U.PORTO

ViBest

FEUP FACULDADE DE ENGENHARIA

ViBest

Verification of efficiency of installed TMDs

Innauguration

Maximum acceleration: Vertical: 0.35 m/s² Lateral: 0.1 m/^2 **Maximum comfort**

Continuous Dynamic Monitoring

ViBest

Temporary Monitoring Traffic induced vibrations in Roadway Bridges

• Salgueiro Maia cable-stayed bridge

Load cells in stay cables

Embeded strain gages

FACULDADE DE ENGENHARIA UNIVERSIDADE DO PORTO **U.PORTO** FEUP

Monitoring Traffic induced vibrations in Railway Bridges and Fatigue assessment

Dynamic effects and fatigue assessment if Trezói Bridge

Monitoring Traffic induced vibrations in Railway Bridges and Fatigue assessment

Strain measurements under traffic loads

ViBest

Monitoring Traffic induced vibrations in Railway Bridges and Fatigue assessment

Continuous Dynamic Monitoring for Damage Detection

Vibration based Structural Health Monitoring Processing Strategy

ViBest

Dynamic Monitoring System

Em operação desde Setembro 2007

ViBest

Results from one year of Continuous Monitoring

Variation of the first 12 natural frequencies (p-LSCF)

Identification success rates (17 325 setups)

Mode	Success rate (%)	
1	99.99	
2	99.99	
3	100	
4	100	
5	99.94	
6	99.33	
7	99.87	
8	100	
9	99.90	
10	99.04	
11	99.67	
12	100	

ViBest MMMMMM

U.PORTO FEU

FEUP FACULDADE DE ENGENHARIA

Results from 3 years of Continuous Monitoring

Variation of the 4 first natural frequencies along 3 years

ViBest

U. PORTO FEUP FACULDADE DE ENGENHARIA

Removal of Environmental and Operational Effects

Selection of variables with influence on the natural frequencies

Removal of Environmental and Operational Effects

Multiple regression model

Detection of damage associated to very small frequency variations

Dynamic Monitoring for Damage Detection

Numerical simulation of 4 damage scenarios

FEUP stress-ribbon footbridge Vibration based SHM

$$L_1$$
=30m; L_2 =28m
 T_0 =750kN x 4

0.15₄₄ 1.00

FACULDADE DE ENGENHARIA **U.PORTO** FEUP UNIVERSIDADE DO PORTO

Continuous Dynamic Monitoring System implemented on FEUP Campus Footbridge

Elevations and cross section of the footbridge, with indication of the components of the installed continuous dynamic monitoring system

Monitoring results from 1st June 2009 to 31st March 2011

Monitoring results from 1st June 2009 to 31st March 2011

Mode order	Average frequency (Hz)	Interval (Hz)	Max. rel. difference
1	0.981	0.906-1.056	15.3
5	3.671	3.337-4.007	18.3
6	4.171	3.745-4.563	19.6
7	5.508	4.987-6.046	19.2
8	6.379	5.766-7.021	19.7
9	7.909	7.114-8.693	20.0
10	9.096	8.124-10.030	20.9
11	10.623	9.487-11.758	21.4
12	12.348	11.031-13.624	21.0
13	13.919	12.480-15.382	20.8
14	16.004	14.330-17.597	20.4
15	17.492	15.714-19.158	19.7

Variations of natural frequency estimates

Continuous Dynamic Monitoring for characterization of the aerodynamic behaviour

• Braga Stadium suspension roof (EURO'2004)

Top view of the stadium

Cross section

ViBest MMMMM

LABORATORY OF VIBRATIONS AND STRUCTURAL MONITORING

Continuous wind and dynamic monitoring systems

Estimates of modal parameters

One-year variation of identified natural frequencies (p-LSCF)

Malhahalaanamaa

LABORATORY OF VIBRATIONS AND STRUCTURAL MONITORING

Estimates of modal parameters

Dispersion of the Identified damping Ratios (pLSCF)

Mode 5

ViBest

LABORATORY OF VIBRATIONS AND STRUCTURAL MONITORING

Dynamic monitoring of two bridges in a dam construction site

Filipe Magalhães; Álvaro Cunha (www.fe.up.pt/vibest)

Dam Construction Site

Relevant construction activities:

- rock blasting
- heavy trucks crossing the

roadway bridge

- deepening of the river bed
- **Retrofit of the railway bridge** foundations

ViBest

Roadway Bridge

Roadway Bridge - Ambient Vibration Test

Lateral Bending

ViBest

Roadway Bridge - Monitoring System

In continuous operation since December 2011

Monitoring **Software**

DynaMo Web page

Updated every 30 minutes

RIH

R2V R3H R4V R5H R6V

ViBest | Faculdade de Engenharia da Universidade do Porto | 2012

Results Roadway Bridge (3 years)

Roadway Bridge - Temperature effects

Lower temperatures

The support of the deck in the main piers allows free relative lateral displacements

Mode shape in plan view

Higher temperatures

The expansion of the deck leads to a contact between deck and main piers that constrains relative lateral displacements

Mode shape in plan view

ViBest

U. PORTO FEUP FACULDADE DE ENGENHAI

Railway Bridge

Built in 1882

Steel riveted truss deck with a height of 3 meters and a total length of 169 meters

Deepening of the river bed of about 3m

ViBest

Railway Bridge - Ambient Vibration Test

f = 9.38 Hz

ViBest IIIIIIIII

Lateral Bending

f = 4.10 Hz

f = 4.30 Hz

Railway Bridge - Monitoring System

- 13 force balance accelerometers
- 2 24-bit digitizers
- 4 temperature sensors
- 7 geophones
- **3** bi-axial clinometers

Results - Railway Bridge (2.5 years)

Bridge deck natural frequencies

ViBest MMMMMMMM

Results - Railway Bridge

Piers natural frequencies

Increase of the first natural frequency after retrofit

U. PORTO FEUP FACULDADE DE ENGENHARIA UNIVERSIDADE DO PORTO

ViBest

Results - Railway Bridge

Clinometers

— P2 — P3

— P4

U. PORTO FEUP FACULDADE DE ENGENHARIA UNIVERSIDADE DO PORTO

ViBest

Continuous Aerodynamic Monitoring of "Viaduc de La Grande Ravine"

Continuous Aerodynamic Monitoring of "Viaduc de La Grande Ravine"

ViBest

- 5 anemometers
- 14 pressure cells
- 6 termometers
- 6 accelerometers

Continuous wind and dynamic monitoring systems

Wind Turbine

- Located in the North of Portugal (Torrão Wind Farm)
- 2.0 MW variable speed generator
- Hub height: 80 m
- Rotor diameter: 80 m •
- **Tubular steel tower**
- **Bolted flanged connection between tower** segments
- **Slab foundation**

Wind Turbine

- 9 accelerometers along 4 levels
- 24-bit digitizer and acquisition system
- Setups of 10 min. (accelerations + SCADA)

ViBest

Automated Modal Tracking

• Reference properties from 6 operating regimes

Operating regime	Wind turbine condition	
1	Parked or idling (with high pitch angle)	
2	Parked or idling (with lower pitch angle, in conditions to start	
	operating)	
3	Transition situation from non-operation to operation (mean value	
	of rotor speed between 0 and the lowest operating rotor speed)	
	Between lowest operating rotor speed and the point where the	
4	pitch angle starts to increase to avoid excessive rotor torque	
	values	
5	Between regime 4 and highest operating rotor speed	
6	Wind speed higher than cut-out speed	

3 SS* 3 FA/SS 2 SS 2 FA 2.55 1 SS* 1 SS 1 FA 10 8 12 14 16 18 Rotor Speed [rpm]

ViBest

U. PORTO **FEUP** FACULDADE DE ENGENHARIA UNIVERSIDADE DO PORTO

4 FA

Automated Modal Tracking

• 9 vibration modes identified along the whole operating regime of the turbine

ViBest

Automated Modal Tracking

• Assessment of the modal properties at operating condition

• Evolution of damping with the wind speed

1st SS tower bending mode

ViBest

Dynamic Monitoring of Baixo Sabor Dam

Baixo Sabor Dam (Client: EDP)

U. PORTO FEUP FACULDADE DE ENGENHARIA

ViBest | Facuidade de Engenharia da Universidade do Porto | 2016

-

12

10 (Da)

3

20

cipita 2

0.1

Maximos

Maximon

5 -

(Bail optio

1

•

•

Sistema de Monitorização Dinâmica da Barragem do Sabor Escalão de Montante ************

Sec. of

Dillari

13UJan

COLUMN I

OC/Jann

1 M D

J

Conclusions

- The case studies previously described clearly show the usefulness and potential of continuous dynamic monitoring in large Civil structures of different typology (e.g. roadway, railway and pedestrian bridges, stadia suspension roofs, wind turbines or dams), provided that appropriate monitoring equipment and automated data processing tools are implemented
- ViBest_SHM is a very large digital data repository and information system that may be used for collaborative research at European level in the area of SHM

Laboratory of Vibrations and Monitoring

www.fe.up.pt/vibest

