DATA-BASED MODELS FOR ASSESSMENT AND LIFE PREDICTION OF MONITORED BRIDGE WELDED JOINTS

Isaac FARRERAS ALCOVER, PhD

ifal@cowi.com

COWI, Denmark

COST Action TU1402. 2nd Workshop in Istanbul, 28-09-2015

1

Agenda

- > Introduction
- > Case study: SHM of welded bridge joints
 - > Strategy undertaken
 - > Monitoring system
 - > SHM applications
 - > Data-based modelling: environmental and operational conditions and loads
 - Methodology for life prediction
 - > Methodology for performance assessment
- > Concluding remarks

Introduction

Structural type	Component and deterioration mechanism	Asset Management Objectives	Asset Management actions/decisions	SHM strategy and tools		
	Deterioration:					
- Short-span bridge	- Fatique	- Design verification	- Inspection	- Type of sensor		
- Long-span bridge	Corrector	- Service-life prediction	- Repair	Number of sensorsLocation of sensors		
- Tunnel	- Corrosion	Abnormal	- Maintenance	 Data acquisition: permanent/periodic monitoring Performance indicator 		
- Dam	- Wear and tear	behaviour identification	- Life extension			
	- Extreme events,			- SHM approach:		
- Offshore wind		- Support to	- Traffic disruption	- Data-based / model-based		
turdine	Component:	Operation & Maintenance		- Global / local		
	- Welded joint, cable, expansion joint,	- Etc		- Tools: - Regression models, tim- series models, FFT, SSI, Bayesian networks, SRM, etc,,,		
Given for an application		Discussion: infrastructure owner, SHMS designer and structural engineer		Prescribed by SHMS designer Influenced by cost/budget		
				(at the	e start)	

COWI Case study: SHM of welded joints at Great Belt Bridge

The Great Belt Bridge:

- > Inaugurated in 1998 in Denmark
- > 1624m main span
- > Orthotropic steel deck
- > Concrete towers
- > 3rd longest suspension bridge
 in the world
- > Instrumented with a SHMS

COWI Structural component: welded joints of the orthotropic deck

Monitoring system: location of sensors

An overview of the case study

7

	Structural type	Component and deterioration mechanism	Asset Management Objectives	Asset Management actions/decisions	SHM strategy and tools
	- Short-span bridge	Deterioration:	- Design verification	- Inspection	- Type of sensor: SG, thermometers, traffic classification
Ì	- Long-span bridge	- Corrosion	- Service-life prediction	- Repair	- Number of sensors: 20 - Location of sensors: 3
	- Tunnel	- Wear and tear	- Abnormal behaviour identification	- Maintenance	Data acquisition: permanent monitoring/periodic Performance indicator: SN fatigue loading, fatigue lives
	- Dam - Offshore wind	- Extreme events, Component:	- Support to Operation &	- Traffic disruption	- SHM approach: - Data-based / model-based
		- Welded joint, cable, expansion joint,	- Etc		- Global / local - Tools: - Regression models, tim- series models, MCS, FFT, SSI, Bayesian networks, SRM, etc.,,

- > A local, data-based approach
- Study of critical components and relevant deterioration mechanisms.
- "Damage" locations are assumed a-priori.

An overview of the case study

Monitoring system

SHM applications

- > Performance prediction (prognostics)
 - > AIM: Determination of remaining fatigue lives.
 - > Short-term monitoring campaigns. Long-term infrastructure management.
- > Performance assessment (*diagnostics*)
 - > AIM: Determine if the component is behaving as expected.
 - > Continuous monitoring-data. Short-term infrastructure management.
- > Need to develop models (load/response prediction and data interpretation)

Regression models for SHM

> Performance indicator: SN fatigue loading

- Characterization of the correlation patern among heavy traffic counts, pavement temperature and fatigue loading at welded joints.
- > Daily time discretization

11

Regression models for SHM

Regression models for SHM

- Normal correlation pattern characterized using a training dataset.
- Under no time-varying effects, structural performance can be predicted by monitoring temperatures and traffic counts (usage monitoring)
- > Applications: life prediction, performance assessment.

Temperature modelling

 Autoregressive models of 1st order to model deseasonalized daily-averaged pavement temperatures

$$\bar{T}_t = \alpha_1 \cdot \sin(\alpha_2 \cdot t + \alpha_3) + m_T$$
$$T_t^* = \frac{T_{\Delta t}(t) - \bar{T}_t}{\sigma_{T,t}}$$
$$T_t^* = \varphi_{T,1} \cdot T_{t-1}^* + \epsilon_{T,t}$$

Traffic modelling

15

- > Deseasonalization of heavy traffic daily counts
- > Regression models to account for day-of-the-week and holiday effects
- > Autoregressive models are fitted to the residuals of the regression models.

$$B_t^* = \frac{B_{\Delta t}(t) - \mu_{B,t}}{\sigma_{B,t}}$$

$$B_t^* = \lambda_1 + \lambda_2 X_{2,t} + \dots + \lambda_k X_{k,t} + \epsilon_{\mathrm{B},\mathrm{t}}$$

$$\epsilon_{B,t} = \sum_{i=1}^{p} \varphi_{B,i} \cdot \epsilon_{B,t-i} + \nu_t$$

COST Action TU1402. 2nd Workshop in Istanbul, 28-09-2015

Application 1: Fatigue life prediction

Simulation of actions, i.e. traffic and temperature (time-series models)

Monte Carlo simulation: time to failure realizations (S-N LSF)

Fatigue life calculation (reliability profile)

Application 1: Fatigue life prediction

- Assessment of the impact of different scenarios of pavement temperatures (climate change) and heavy traffic intensities.
- > Easy-to-understand output: fatigue lives [years]
- Tool for informing long-term infrastructure management decisions (e.g. inspection scheduling).

Application 2: Performance assessment

> Development of an algorithm for identifying abnormal behaviours based on statistical control charts of the regression models.

- > Detection of abnormal behaviour on 15/05/2012.
- > Cause: Diversion of traffic due to maintenance activities.
- > Tool for informing short-term infrastructure management decisions.

Concluding remarks (1/2)

- Case study presented: SHM of welded bridge joints of the Great Belt Bridge
- > Strategy followed:
 - > Local, data-based approach
 - > Focus on critical components under critical deterioration mechanisms, i.e. fatigue
 - > Performance indicators chosen: SN fatigue loading and remaining fatigue lives
- > Tools:
 - regression models
 - > time-series models
 - > statistical control charts
 - > MCS for fatigue reliability assessment
- > Definition of two applications and associated methodologies:
 - > life prediction (long-term management)
 - > performance assessment (short-term management)

Concluding remarks (2/2)

- > SHM strategies and tools depend on the Asset Infrastructure Management aims and on the available budget.
- Need for a formal framework to define SHM strategies and tools.
- > Environmental/operational loads and sources of uncertainty to be considered.
- > Final output shall be easy to understand
 - > Remaining lives [years]
 - > Detection of abnormal behaviour [YES/NO]
- > Benefit of targeting specific components with known deterioration mechanisms.
- Data-based models have the potential to be scalated to other structures subject to the same deterioration mechanism, but rely highly on the data quality and quantity.

Thank you for your attention.

Questions?

References:

[2015] Fareras-Alcover, I. Chryssanthopoulos, M.K., Andersen, J.E. Regression Models for Structural Health Monitoring of Welded Bridge Joints based on Temperature, Traffic and Strain Measurements. *International Journal of Structural Health Monitoring*. In press.

Temporal requirements for fatigue life prediction

22

> Accuracy in fatigue life prediction Vs. size of the training dataset used

Using **33% of the data leads to a 98% of accuracy** in determining the fatigue lives.

Application: Fatigue life prediction

Methodological steps

- > Definition of SN limit state function
- > Performance of Monte Carlo Simulation
- Simulation of temperatures, traffic and SN fatigue loading based on developed models
- > Determination of fatigue-lives realizations
- > Calculation of time-varying fatigue reliability profiles