

# **TU1402 Training School 2018**

## **Objective**

The objective of the second COST TU1402 Training School is to explore methods and tools to implement a Value of Information analysis in structural engineering. Through the training school, the students will acquire knowledge and skills on the implementation of probabilistic modelling, structural reliability analysis and decision analysis by the use of Bayesian networks. All learning content will be taught alongside its implementation in a selected case study. A student who successfully has taken part in the course will be able to:

- Develop and apply probabilistic models of the relevant uncertainties in decision analyses, in structural reliability analyses and for measurement information modelling
- Perform Value of SHM Information and decision analyses

#### **Dates and venue**

3 days within 24<sup>th</sup> to 28<sup>th</sup> of September 2018

#### Lecturers

Prof. Dr. Daniel Straub, Technical University of Munich, Germany Prof. Dr. Jochen Köhler, Norwegian Technical University, Norway Assoc. Prof. Dr. Sebastian Thöns, Danish Technical University, Denmark Further lecturers will be announced later.

#### Who should attend?

Post-Graduate Students and professionals.

As the training school is focused on implementation of methods, the attendees should ideally have a solid background in relevant topics as e.g. Probability Theory, Uncertainty Representation, Reliability Theory, Decision Theory. If potential attendees feel unsecure about their skills, brief self-study is recommended prior to the training school. Reference to basic engineering-oriented literature is given at the end of this document. Further references can be given on request.

#### Application, scholarships and registrations

There are 10 TU1402 scholarships with a support of maximum 400,00 Euro available. Please send a motivation letter, a short CV including the most relevant study transcript via email to Sebastian Thöns (sebt@byg.dtu.dk).



# **Training School Plan**

| Day 1                   | Introduction to the example case        |                                                          |
|-------------------------|-----------------------------------------|----------------------------------------------------------|
|                         | Time                                    | Topics                                                   |
|                         | 08.30-9:00                              | Introduction to the case and the available data          |
|                         | 09:00-10:00                             | Value of information concept & decisions                 |
|                         | 10:30-12:00                             | Decisions, consequences and monitoring of the case study |
|                         | 13:00-14:30                             | Introduction to Bayesian Networks and Influence Diagrams |
|                         | 15:00-17:00                             | Representing the case study by an Influence Diagram      |
| Day 2                   | Structural reliability and measurements |                                                          |
|                         | Time                                    | Topics                                                   |
|                         | 08.30-10:00                             | Modelling the quality of information                     |
|                         | 10:30-12:00                             | Case study work                                          |
|                         | 13:00-14:30                             | Reliability analysis within the BN                       |
|                         | 15:00-17:00                             | Case study work                                          |
| Day 3 Decision analyses |                                         | lyses                                                    |
|                         | Time                                    | Topics                                                   |
|                         | 08.30-10:00                             | Sequential decision modelling                            |
|                         | 10:30-12:00                             | Case study work                                          |
|                         | 13:00-17:00                             | Work on and presentation of own projects                 |
|                         |                                         |                                                          |

## **Course evaluation**

Course Diplomas are issued by COST TU1402 on the basis of (1) active course preparation, (2) active course participation and (3) a positive evaluation of the provided case study after the training school. 2.5 ECTS points will be awarded for the course.

# Literature for preparation

- [1] Straub D. 2017 Lecture notes in Engineering Risk Assessment. Technische Universität München
- [2] Raiffa H, Schlaifer R. Applied statistical decision theory. Wiley classics library, Originally published: Harvard University, 1961. Republished: Wiley (2000)
- [3] Benjamin JR, Cornell CA. Probability, Statistics and Decision for Civil Engineers: McGraw-Hill New York; 1970.